【综述】DSP处理器芯片

发布于:2024-04-28 ⋅ 阅读:(23) ⋅ 点赞:(0)

文章目录

TI DSP

C2000系列

TMS320F28003X

典型应用

开发工具链

参考资料


TI DSP

        TI C2000系列 控制领域

        TI C5000系列 通信领域

        TI C6000系列 图像领域

C2000系列

        第三代集成了C28浮点DSP内核,采用了65nm工艺上一代180nm

        第四代正在规划中,将内置C29 DSP内核,性能提高2至3倍

TMS320F28003X

        C2000F28003X包括一个120MHz主频的32C28 浮点DSP,以及一个120MHz主频的CLA。CLA (Control Law Accelerator,控制率加速器)独立于C28x CPU工作,时钟频率与CPU相同,可执行算法以及周期性的计算工作。通过增加平行的处理单元CLA,拓展了C28x CPU的性能。

典型应用

        电机控制示例如下:

void PWMA_config(void)
{
	P_SW2 |= 0x80;		//SFR enable   

	PWM1   = 0;
	PWM1_L = 0;
	PWM2   = 0;
	PWM2_L = 0;
	PWM3   = 0;
	PWM3_L = 0;
	P1n_push_pull(0x3f);

	PWMA_PSCR = 3;		// 预分频寄存器, 分频 Fck_cnt = Fck_psc/(PSCR[15:0}+1), 边沿对齐PWM频率 = SYSclk/((PSCR+1)*(AAR+1)), 中央对齐PWM频率 = SYSclk/((PSCR+1)*(AAR+1)*2).
	PWMA_DTR  = 24;		// 死区时间配置, n=0~127: DTR= n T,   0x80 ~(0x80+n), n=0~63: DTR=(64+n)*2T,  
						//				0xc0 ~(0xc0+n), n=0~31: DTR=(32+n)*8T,   0xE0 ~(0xE0+n), n=0~31: DTR=(32+n)*16T,
	PWMA_ARR    = 255;	// 自动重装载寄存器,  控制PWM周期
	PWMA_CCER1  = 0;
	PWMA_CCER2  = 0;
	PWMA_SR1    = 0;
	PWMA_SR2    = 0;
	PWMA_ENO    = 0;
	PWMA_PS     = 0;
	PWMA_IER    = 0;

	PWMA_CCMR1  = 0x68;		// 通道模式配置, PWM模式1, 预装载允许
	PWMA_CCR1   = 0;		// 比较值, 控制占空比(高电平时钟数)
	PWMA_CCER1 |= 0x05;		// 开启比较输出, 高电平有效
	PWMA_PS    |= 0;		// 选择IO, 0:选择P1.0 P1.1, 1:选择P2.0 P2.1, 2:选择P6.0 P6.1, 
bit4: ENO3P,  bit3: ENO2N,  bit2: ENO2P,  bit1: ENO1N,  bit0: ENO1P

	PWMA_CCMR2  = 0x68;		// 通道模式配置, PWM模式1, 预装载允许
	PWMA_CCR2   = 0;		// 比较值, 控制占空比(高电平时钟数)
	PWMA_CCER1 |= 0x50;		// 开启比较输出, 高电平有效
	PWMA_PS    |= (0<<2);	// 选择IO, 0:选择P1.2 P1.3, 1:选择P2.2 P2.3, 2:选择P6.2 P6.3, 
bit4: ENO3P,  bit3: ENO2N,  bit2: ENO2P,  bit1: ENO1N,  bit0: ENO1P

	PWMA_CCMR3  = 0x68;		// 通道模式配置, PWM模式1, 预装载允许
	PWMA_CCR3   = 0;		// 比较值, 控制占空比(高电平时钟数)
	PWMA_CCER2 |= 0x05;		// 开启比较输出, 高电平有效
	PWMA_PS    |= (0<<4);	// 选择IO, 0:选择P1.4 P1.5, 1:选择P2.4 P2.5, 2:选择P6.4 P6.5, 

	PWMA_BKR    = 0x80;		// 主输出使能 相当于总开关
	PWMA_CR1    = 0x81;		// 使能计数器, 允许自动重装载寄存器缓冲, 边沿对齐模式, 向上计数,  bit7=1:写自动重装载寄存器缓冲(本周期不会被打扰), =0:直接写自动重装载寄存器本(周期可能会乱掉)
	PWMA_EGR    = 0x01;		//产生一次更新事件, 清除计数器和与分频计数器, 装载预分频寄存器的值
}


void StepMotor(void) 
{
	switch(step)
	{
	case 0:  // AB  PWM1, PWM2_L=1
			PWMA_ENO = 0x00;	PWM1_L=0;	PWM3_L=0;
			Delay_500ns();
			PWMA_ENO = 0x01;		// 打开A相的高端PWM
			PWM2_L = 1;				// 打开B相的低端
			ADC_CONTR = 0x80+10;	// 选择P0.2作为ADC输入 即C相电压
			CMPCR1 = 0x8c + 0x10;	//比较器下降沿中断
			break;
	case 1:  // AC  PWM1, PWM3_L=1
			PWMA_ENO = 0x01;	PWM1_L=0;	PWM2_L=0;	// 打开A相的高端PWM
			Delay_500ns();
			PWM3_L = 1;				// 打开C相的低端
			ADC_CONTR = 0x80+9;		// 选择P0.1作为ADC输入 即B相电压
			CMPCR1 = 0x8c + 0x20;	//比较器上升沿中断
			break;
	case 2:  // BC  PWM2, PWM3_L=1
			PWMA_ENO = 0x00;	PWM1_L=0;	PWM2_L=0;
			Delay_500ns();
			PWMA_ENO = 0x04;		// 打开B相的高端PWM
			PWM3_L = 1;				// 打开C相的低端
			ADC_CONTR = 0x80+8;		// 选择P0.0作为ADC输入 即A相电压
			CMPCR1 = 0x8c + 0x10;	//比较器下降沿中断
			break;
	case 3:  // BA  PWM2, PWM1_L=1
			PWMA_ENO = 0x04;	PWM2_L=0;	PWM3_L=0;	// 打开B相的高端PWM
			Delay_500ns();
			PWM1_L = 1;				// 打开C相的低端
			ADC_CONTR = 0x80+10;	// 选择P0.2作为ADC输入 即C相电压
			CMPCR1 = 0x8c + 0x20;	//比较器上升沿中断
			break;
	case 4:  // CA  PWM3, PWM1_L=1
			PWMA_ENO = 0x00;	PWM2_L=0;	PWM3_L=0;
			Delay_500ns();
			PWMA_ENO = 0x10;		// 打开C相的高端PWM
			PWM1_L = 1;				// 打开A相的低端
			adc11 = ((adc11 *7)>>3) + Get_ADC10bitResult(11);
			ADC_CONTR = 0x80+9;		// 选择P0.1作为ADC输入 即B相电压
			CMPCR1 = 0x8c + 0x10;	//比较器下降沿中断
			break;
	case 5:  // CB  PWM3, PWM2_L=1
			PWMA_ENO = 0x10;	PWM1_L=0;	PWM3_L=0;	// 打开C相的高端PWM
			Delay_500ns();
			PWM2_L = 1;				// 打开B相的低端
			ADC_CONTR = 0x80+8;		// 选择P0.0作为ADC输入 即A相电压
			CMPCR1 = 0x8c + 0x20;	//比较器上升沿中断
			break;

	default:
			break;
	}

	if(B_start)		CMPCR1 = 0x8C;	// 启动时禁止下降沿和上升沿中断
}

开发工具链

        底层软件库、软件demo、工具链,示例如下:

参考资料

        TMS320F28003x Real-Time Microcontrollers datasheet.pdf


网站公告

今日签到

点亮在社区的每一天
去签到