【深度学习】LLaMA-Factory 大模型微调工具, 大模型GLM-4-9B Chat ,微调与部署 (2)

发布于:2024-07-24 ⋅ 阅读:(142) ⋅ 点赞:(0)

资料:
https://github.com/hiyouga/LLaMA-Factory/blob/main/README_zh.md
https://www.53ai.com/news/qianyanjishu/2015.html

代码拉取:

git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory

build镜像和执行镜像:


cd /ssd/xiedong/glm-4-9b-xd/LLaMA-Factory

docker build -f ./docker/docker-cuda/Dockerfile \
    --build-arg INSTALL_BNB=false \
    --build-arg INSTALL_VLLM=false \
    --build-arg INSTALL_DEEPSPEED=false \
    --build-arg INSTALL_FLASHATTN=false \
    --build-arg PIP_INDEX=https://pypi.org/simple \
    -t llamafactory:latest .

docker run -dit --gpus=all \
    -v ./hf_cache:/root/.cache/huggingface \
    -v ./ms_cache:/root/.cache/modelscope \
    -v ./data:/app/data \
    -v ./output:/app/output \
    -v /ssd/xiedong/glm-4-9b-xd:/ssd/xiedong/glm-4-9b-xd \
    -p 9998:7860 \
    -p 9999:8000 \
    --shm-size 16G \
    llamafactory:latest

docker exec -it  a2b34ec1 bash

pip install bitsandbytes>=0.37.0

快速开始
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA 微调、推理和合并。

llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml

高级用法请参考 examples/README_zh.md(包括多 GPU 微调)。

Tip

使用 llamafactory-cli help 显示帮助信息。

LLaMA Board 可视化微调(由 Gradio 驱动)

llamafactory-cli webui

看一点资料:https://www.cnblogs.com/lm970585581/p/18140564

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

sft指令微调

官方的lora sft微调例子:

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --do_train \
    --model_name_or_path path_to_llama_model \
    --dataset alpaca_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target q_proj,v_proj \
    --output_dir path_to_sft_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16

数据准备

数据准备的官方说明:

https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md

偏好数据集是用在奖励建模阶段的。

本次微调选择了开源项目数据集,地址如下:
https://github.com/KMnO4-zx/huanhuan-chat/blob/master/dataset/train/lora/huanhuan.json
下载后,将json文件存放到LLaMA-Factory的data目录下。

修改data目录下dataset_info.json 文件。
直接增加以下内容即可:

 "huanhuan": {
    "file_name": "huanhuan.json"
  }

如图:
在这里插入图片描述

进入容器打开webui:

llamafactory-cli webui

网页打开页面:
http://10.136.19.26:9998/

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
webui训练老报错,可以把指令弄下来去容器里执行:

llamafactory-cli train \
    --stage sft \
    --do_train True \
    --model_name_or_path /ssd/xiedong/glm-4-9b-xd/glm-4-9b-chat \
    --preprocessing_num_workers 16 \
    --finetuning_type lora \
    --quantization_method bitsandbytes \
    --template glm4 \
    --flash_attn auto \
    --dataset_dir data \
    --dataset huanhuan \
    --cutoff_len 1024 \
    --learning_rate 5e-05 \
    --num_train_epochs 3.0 \
    --max_samples 100000 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --lr_scheduler_type cosine \
    --max_grad_norm 1.0 \
    --logging_steps 5 \
    --save_steps 100 \
    --warmup_steps 0 \
    --optim adamw_torch \
    --packing False \
    --report_to none \
    --output_dir saves/GLM-4-9B-Chat/lora/train_2024-07-23-04-22-25 \
    --bf16 True \
    --plot_loss True \
    --ddp_timeout 180000000 \
    --include_num_input_tokens_seen True \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout 0.1 \
    --lora_target all 

在这里插入图片描述
训练完:

***** train metrics *****
epoch = 2.9807
num_input_tokens_seen = 741088
total_flos = 36443671GF
train_loss = 2.5584
train_runtime = 0:09:24.59
train_samples_per_second = 19.814
train_steps_per_second = 0.308

chat

在这里插入图片描述

在这里插入图片描述

评估模型

40G显存空余才行,这模型太大。

类似,看指令 ,然后命令行执行:

CUDA_VISIBLE_DEVICES=1,2,3 llamafactory-cli train \
    --stage sft \
    --model_name_or_path /ssd/xiedong/glm-4-9b-xd/glm-4-9b-chat \
    --preprocessing_num_workers 16 \
    --finetuning_type lora \
    --quantization_method bitsandbytes \
    --template glm4 \
    --flash_attn auto \
    --dataset_dir data \
    --eval_dataset huanhuan \
    --cutoff_len 1024 \
    --max_samples 100000 \
    --per_device_eval_batch_size 2 \
    --predict_with_generate True \
    --max_new_tokens 512 \
    --top_p 0.7 \
    --temperature 0.95 \
    --output_dir saves/GLM-4-9B-Chat/lora/eval_2024-07-23-04-22-25 \
    --do_predict True \
    --adapter_name_or_path saves/GLM-4-9B-Chat/lora/train_2024-07-23-04-22-25 

数据集有点大,没执行完我就停止了,结果可能是存这里:/app/saves/GLM-4-9B-Chat/lora/eval_2024-07-23-04-22-25

在这里插入图片描述

导出模型

填导出路径进行导出/ssd/xiedong/glm-4-9b-xd/export_test0723。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

总结

这么看下来,这个文档的含金量很高:
https://github.com/hiyouga/LLaMA-Factory/tree/main/examples

为了方便使用,推送了这个镜像:

docker push kevinchina/deeplearning:llamafactory-0.8.3

网站公告

今日签到

点亮在社区的每一天
去签到