代码随想录算法训练营Day37 | 322. 零钱兑换、279.完全平方数、139.单词拆分、多重背包、背包问题总结

发布于:2025-02-11 ⋅ 阅读:(52) ⋅ 点赞:(0)


322.零钱兑换

思路与重点

  • 本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。所以本题的两个for循环内外层顺序也无所谓
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        for(int i = 0; i < coins.size(); i++){
            for(int j = coins[i]; j <= amount; j++){
                if(dp[j - coins[i]] != INT_MAX) dp[j] = min(dp[j], dp[j - coins[i]] + 1);
            }
        }
        return dp[amount] < INT_MAX ? dp[amount] : -1;
    }
};

279.完全平方数

思路与重点

  • 本题和 322. 零钱兑换 基本是一样的。
class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<unsigned long long> dp(amount + 1, 0);
        dp[0] = 1;
        for(int i = 0; i < coins.size(); i++){
            for(int j = coins[i]; j <= amount; j++){
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

139.单词拆分(二刷再看看!)

思路与重点

  • 用记忆化递归解决:使用memory数组保存每次计算的以startIndex起始的计算结果,如果memory[startIndex]里已经被赋值了,直接用memory[startIndex]的结果。
class Solution {
private:
    bool backtracking (const string& s,
            const unordered_set<string>& wordSet,
            vector<bool>& memory,
            int startIndex) {
        if (startIndex >= s.size()) {
            return true;
        }
        // 如果memory[startIndex]不是初始值了,直接使用memory[startIndex]的结果
        if (!memory[startIndex]) return memory[startIndex];
        for (int i = startIndex; i < s.size(); i++) {
            string word = s.substr(startIndex, i - startIndex + 1);
            if (wordSet.find(word) != wordSet.end() && backtracking(s, wordSet, memory, i + 1)) {
                return true;
            }
        }
        memory[startIndex] = false; // 记录以startIndex开始的子串是不可以被拆分的
        return false;
    }
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> memory(s.size(), 1); // -1 表示初始化状态
        return backtracking(s, wordSet, memory, 0);
    }
};
  • 完全背包的思路:
class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> dp(s.size() + 1, false);
        dp[0] = true;
        for (int i = 1; i <= s.size(); i++) {   // 遍历背包
            for (int j = 0; j < i; j++) {       // 遍历物品
                string word = s.substr(j, i - j); //substr(起始位置,截取的个数)
                if (wordSet.find(word) != wordSet.end() && dp[j]) {
                    dp[i] = true;
                }
            }
        }
        return dp[s.size()];
    }
};

多重背包

思路与重点

  • 多重背包和01背包是非常像的, 为什么和01背包像呢?每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。
#include<iostream>
#include<vector>
using namespace std;
int main() {
    int bagWeight,n;
    cin >> bagWeight >> n;
    vector<int> weight(n, 0);
    vector<int> value(n, 0);
    vector<int> nums(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    for (int i = 0; i < n; i++) cin >> nums[i];

    vector<int> dp(bagWeight + 1, 0);

    for(int i = 0; i < n; i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            // 以上为01背包,然后加一个遍历个数
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
        }
    }

    cout << dp[bagWeight] << endl;
}

背包问题总结


网站公告

今日签到

点亮在社区的每一天
去签到