PyTorch快速入门教程【小土堆】之卷积层

发布于:2025-02-11 ⋅ 阅读:(64) ⋅ 点赞:(0)

视频地址神经网络-卷积层_哔哩哔哩_bilibili

in_channels (int) -输入图像的通道数
out_channels (int) -输出图像的通道数
kernel_size (int或tuple)-卷积核的大小
stride(int或tuple,可选)-卷积的步幅。默认值:1
padding (int, tuple或str,可选)-填充四个边的值。默认值:0
dilation(int或tuple,可选)-内核元素之间的间距。默认值:1
groups (int,可选)-从输入通道到输出通道的阻塞连接数。默认值:1
bias (bool,可选)-如果为True,则在输出中添加可学习的偏差。默认值:True
padding_mode (str,可选)- 填充的模式'zero ', ‘reflect‘, ‘ replication ’或’circular’。默认值:“0”

长宽计算公式

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("CIFAR10", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset, batch_size=64)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        return x


tudui = Tudui()

for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    print(imgs.shape)  # torch.Size([64, 3, 32, 32]) ,批次数,卷积前通道数,长,宽
    print(output.shape)  # torch.Size([64, 6, 30, 30]) ,批次数,经过卷积后通道数,经过卷积后长,经过卷积后宽


网站公告

今日签到

点亮在社区的每一天
去签到