【学习笔记】机器学习(Machine Learning) | 第四章(3)| 多变量线性回归

发布于:2025-05-01 ⋅ 阅读:(15) ⋅ 点赞:(0)

机器学习(Machine Learning)

简要声明

基于吴恩达教授(Andrew Ng)课程视频
BiliBili课程资源



一、特征缩放(Feature Scaling)

二、梯度下降收敛性检验与学习率选择

三、特征工程与多项式回归

(一)特征工程:从数据中发现隐藏规律

1.1 特征工程的核心思想

通过创造性组合原始特征,将领域知识注入机器学习模型。如图1所示,房屋价格预测中:

原始特征 : x 1 ( frontage ) ,   x 2 ( depth ) 新特征 : x 3 = x 1 × x 2 = area 模型公式 : f w , b ( x ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + b \begin{aligned} \text{原始特征} & : x_1(\text{frontage}),\ x_2(\text{depth}) \\ \text{新特征} & : x_3 = x_1 \times x_2 = \text{area} \\ 模型公式 & : f_{\mathbf{w},b}(\mathbf{x}) = w_1x_1 + w_2x_2 + w_3x_3 + b \end{aligned} 原始特征新特征模型公式:x1(frontage), x2(depth):x3=x1×x2=area:fw,b(x)=w1x1+w2x2+w3x3+b

1.2 特征工程的三大范式

方法类型 数学表达 应用场景
数值转换 x ′ = log ⁡ ( x ) x' = \log(x) x=log(x) 处理长尾分布数据
组合运算 x 3 = x 1 × x 2 x_3 = x_1 \times x_2 x3=x1×x2 揭示交互效应

特征工程有无的对比
在这里插入图片描述

在这里插入图片描述


(二)多项式回归:非线性关系的建模利器

2.1 多项式回归原理

通过引入高次项扩展线性模型:

f w , b ( x ) = w 1 x + w 2 x 2 + w 3 x 3 + b f_{w,b}(x) = w_1 x + w_2 x^2 + w_3 x^3 + b fw,b(x)=w1x+w2x2+w3x3+b

image2.jpg

不同阶数多项式拟合效果


(三)特征选择:在复杂性与效果间寻找平衡

3.1 非线性特征设计

如图所示,通过引入平方根项增强模型灵活性:

f w , b ( x ) = w 1 x + w 2 x + b f_{w,b}(x) = w_1 x + w_2 \sqrt{x} + b fw,b(x)=w1x+w2x +b
在这里插入图片描述

混合特征设计的拟合效果

x = np.arange(0,20,1)
y = x**2

X = np.c_[x, x**2, x**3]
X = zscore_normalize_features(X) 

model_w, model_b = run_gradient_descent_feng(X, y, iterations=100000, alpha=1e-1)

plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Normalized x x**2, x**3 feature")
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel("y"); plt.legend(); plt.show()
Iteration         0, Cost: 9.42147e+03
Iteration     10000, Cost: 3.90938e-01
Iteration     20000, Cost: 2.78389e-02
Iteration     30000, Cost: 1.98242e-03
Iteration     40000, Cost: 1.41169e-04
Iteration     50000, Cost: 1.00527e-05
Iteration     60000, Cost: 7.15855e-07
Iteration     70000, Cost: 5.09763e-08
Iteration     80000, Cost: 3.63004e-09
Iteration     90000, Cost: 2.58497e-10
w,b found by gradient descent: w: [5.27e-05 1.13e+02 8.43e-05], b: 123.5000

在这里插入图片描述

通过合理运用特征工程与多项式回归,我们能够将预测误差降低,同时保持较好的模型可解释性。


end_Linear Regression


网站公告

今日签到

点亮在社区的每一天
去签到