Diffusion inversion后的latent code与标准的高斯随机噪音不一样

发布于:2025-05-01 ⋅ 阅读:(64) ⋅ 点赞:(0)

可视化latents_list如下;

 可视化最后一步与标准的噪声:

能隐约看出到最后一步还是会有“马”的形状

整个代码(及可视化代码如下):

## 参考freeprompt(FPE)的代码
import os 
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
from diffusers import DDIMScheduler
from typing import Optional
import numpy as np
from Freeprompt.diffuser_utils import FreePromptPipeline
from Freeprompt.freeprompt_utils import register_attention_control_new
from torchvision.utils import save_image
from torchvision.io import read_image
from Freeprompt.freeprompt import SelfAttentionControlEdit,AttentionStore, AttentionControl


# Note that you may add your Hugging Face token to get access to the models
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_path = "runwayml/stable-diffusion-v1-5"
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipe = FreePromptPipeline.from_pretrained(model_path, scheduler=scheduler).to(device)


import yaml
def load_image_data(yaml_file):
    with open(yaml_file, 'r') as file:
        data = yaml.safe_load(file)
    return data


# Note that you may add your Hugging Face token to get access to the models
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

def load_image(image_path, device):
    image = read_image(image_path)
    image = image[:3].unsqueeze_(0).float() / 127.5 - 1.  # [-1, 1]
    image = F.interpolate(image, (512, 512))
    image = image.to(device)
    return image

self_replace_steps = .8
NUM_DIFFUSION_STEPS = 50   # 替换40步

out_dir = "examples/outputs_noise_test"


# SOURCE_IMAGE_PATH = "examples/img/000141.jpg"
SOURCE_IMAGE_PATH = "wild-ti2i/data/horse.png"
source_image = load_image(SOURCE_IMAGE_PATH, device)

source_prompt = ""

# invert the source image
start_code, latents_list = pipe.invert(source_image,
                                        source_prompt,
                                        guidance_scale=7.5,
                                        num_inference_steps=50,
                                        return_intermediates=True)
# latents_list, 从最后一个到第一个时间步的中间特征, 51个中间潜在变量

# target_prompt = 'a red car'   
target_prompt = 'a photo of a pink horse in the beach'

latents = torch.randn(start_code.shape, device=device)
prompts = [source_prompt, target_prompt]

start_code = start_code.expand(len(prompts), -1, -1, -1)
controller = SelfAttentionControlEdit(prompts, NUM_DIFFUSION_STEPS, self_replace_steps=self_replace_steps) # 自定义模块

register_attention_control_new(pipe, controller)

# Note: querying the inversion intermediate features latents_list
# may obtain better reconstruction and editing results
results = pipe(prompts,
                    latents=start_code,
                    guidance_scale=7.5,
                    ref_intermediate_latents=latents_list) #latents_list:51

save_image(results[0], os.path.join(out_dir, str(target_prompt)+'_recon.jpg'))
save_image(results[1], os.path.join(out_dir, str(target_prompt)+'.jpg'))

 可视化:

import torch
import matplotlib.pyplot as plt

num_images = len(latents_list)
grid_size = (num_images // 5 + (num_images % 5 > 0), 5)  # 自动计算行数,确保所有图像都显示

fig, axes = plt.subplots(*grid_size, figsize=(15, 15))
axes = axes.flatten()  # 将二维网格展平成一维,便于索引

for i in range(num_images):
    latent_image = latents_list[i].squeeze().cpu().detach().numpy().transpose(1, 2, 0)
    axes[i].imshow(latent_image)
    axes[i].set_title(f"Step {i+1}")
    axes[i].axis('off') 

for j in range(num_images, len(axes)):
    axes[j].axis('off')

plt.tight_layout() 
plt.show()


网站公告

今日签到

点亮在社区的每一天
去签到