实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.17 R语言解题

发布于:2025-06-01 ⋅ 阅读:(82) ⋅ 点赞:(0)

dataframe <-data.frame(

effect=c(23,24,25,36,35,36,28,24,27,27,28,26,34,38,39,35,35,34,31,32,29,33,34,35,26,27,25,24,23,28,37,39,35,26,29,25,38,36,35,34,38,36,36,37,34,34,36,39,34,36,31,28,26,24),

Temperature=gl(2,27,54),

operator=gl(3,9,54),

Time=gl(3,3,54))

summary (dataframe)

dataframe.aov2 <- aov(effect~Time*operator*Temperature,data=dataframe)

summary (dataframe.aov2)

> summary (dataframe.aov2)

                          Df Sum Sq Mean Sq F value   Pr(>F)   

Time                       2  436.0  218.00  66.508 8.14e-13 ***

operator                   2  261.3  130.67  39.864 7.44e-10 ***

Temperature                1   50.1   50.07  15.277 0.000393 ***

Time:operator              4  355.7   88.92  27.127 1.98e-10 ***

Time:Temperature           2   78.8   39.41  12.023 0.000100 ***

operator:Temperature       2   11.3    5.63   1.718 0.193895   

Time:operator:Temperature  4   46.2   11.55   3.523 0.015870 * 

Residuals                 36  118.0    3.28                    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

par(mfrow=c(2,2))

with(dataframe,interaction.plot(Temperature,operator,effect,type="b",pch=19,fixed=T,xlab="Temperature (°F)",ylab="effect"))

with(dataframe,interaction.plot(Temperature,Time,effect,type="b",pch=19,fixed=T,xlab="Temperature (°F)",ylab="effect"))

with(dataframe,interaction.plot(operator,Time,effect,type="b",pch=19,fixed=T,xlab="operator)",ylab="effect"))

plot.design(effect~operator*Temperature*Time,data=dataframe)

fit <-lm(effect ~ operator*Temperature*Time,data=dataframe)

anova(fit)

summary(fit)

> summary(fit)

Call:

lm(formula = effect ~ operator * Temperature * Time, data = dataframe)

Residuals:

   Min     1Q Median     3Q    Max

    -3     -1      0      1      3

Coefficients:

                             Estimate Std. Error t value Pr(>|t|)   

(Intercept)                   24.0000     1.0453  22.961  < 2e-16 ***

operator2                      3.0000     1.4782   2.029 0.049856 * 

operator3                      6.6667     1.4782   4.510 6.65e-05 ***

Temperature2                   1.0000     1.4782   0.676 0.503059   

Time2                         11.6667     1.4782   7.892 2.30e-09 ***

Time3                          2.3333     1.4782   1.578 0.123209   

operator2:Temperature2         8.3333     2.0905   3.986 0.000314 ***

operator3:Temperature2         4.6667     2.0905   2.232 0.031909 * 

operator2:Time2               -1.6667     2.0905  -0.797 0.430538   

operator3:Time2               -8.3333     2.0905  -3.986 0.000314 ***

operator2:Time3                5.3333     2.0905   2.551 0.015130 * 

operator3:Time3               -7.0000     2.0905  -3.348 0.001915 **

Temperature2:Time2             0.3333     2.0905   0.159 0.874207   

Temperature2:Time3            -0.6667     2.0905  -0.319 0.751648   

operator2:Temperature2:Time2 -10.6667     2.9565  -3.608 0.000930 ***

operator3:Temperature2:Time2  -6.3333     2.9565  -2.142 0.039015 * 

operator2:Temperature2:Time3  -7.6667     2.9565  -2.593 0.013661 * 

operator3:Temperature2:Time3  -5.0000     2.9565  -1.691 0.099439 . 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.81 on 36 degrees of freedom

Multiple R-squared:  0.9131,    Adjusted R-squared:  0.872

F-statistic: 22.24 on 17 and 36 DF,  p-value: 3.701e-14

par(mfrow=c(2,2))

plot(fit)

par(mfrow=c(2,2))

plot(as.numeric(dataframe$Time), fit$residuals, xlab="Time", ylab="Residuals", type="p", pch=16)

plot(as.numeric(dataframe $Temperature), fit$residuals, xlab="Temperature", ylab="Residuals", pch=16)

plot(as.numeric(dataframe $operator), fit$residuals, xlab="operator", ylab="Residuals", pch=16)


网站公告

今日签到

点亮在社区的每一天
去签到