概述
在Langgraph中我想使用第三方的embeding接口来实现文本的embeding。但目前langchain只提供了两个类,一个是AzureOpenAIEmbeddings,一个是:OpenAIEmbeddings。通过ChatOpenAI无法使用第三方的接口,例如:硅基流平台的接口。只能自己封装一个类,继承Embeding接口,从而实现整合第三方平台Embending API的能力。
实现思路
通过继承和实现langchain_core.embeddings
的Embeddings
类,并实现文本嵌入和查询接口。
在实现嵌入类时,需要实现embed_documents和embed_query两个接口。
import requests
import os
from typing import List
from langchain_core.embeddings import Embeddings
from dotenv import load_dotenv
class CustomSiliconFlowEmbeddings(Embeddings):
def __init__(
self,
api_key: str,
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
model: str = "BAAI/bge-large-zh-v1.5"
):
self.api_key = api_key
self.base_url = base_url
self.model = model
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed a list of documents."""
embeddings = []
for text in texts:
embedding = self.embed_query(text)
embeddings.append(embedding)
return embeddings
def embed_query(self, text: str) -> List[float]:
"""Embed a query."""
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
payload = {
"model": self.model,
"input": text,
"encoding_format": "float"
}
response = requests.post(
self.base_url,
json=payload,
headers=headers
)
if response.status_code == 200:
return response.json()["data"][0]["embedding"]
else:
raise Exception(f"Error in embedding: {response.text}")
使用CustomSiliconFlowEmbeddings嵌入类
使用时,需要设置api_key的值,和模型名称,以及base_url等参数。
# Load environment variables
load_dotenv()
SL_API_KEY = os.getenv("SL_API_KEY")
# Initialize embedding model
embedding_model = CustomSiliconFlowEmbeddings(
base_url="https://api.siliconflow.cn/v1/embeddings",
api_key=SL_API_KEY,
model="BAAI/bge-large-zh-v1.5"
)
# Test the embedding
if __name__ == "__main__":
test_text = "您好世界!"
result = embedding_model.embed_query(test_text)
print(f"Embedding dimension: {len(result)}")
print(f"First few values: {result[:10]}")
# 获取网页中的数据,并进行分割,然后存储到FAISS中
urls = [
"https://lilianweng.github.io/posts/2023-06-23-agent/",
"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/"
]
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=250, chunk_overlap=0)
doc_splits = text_splitter.split_documents(docs_list)
vectorstore = FAISS.from_documents(documents=doc_splits, embedding=embedding_model)
retriever = vectorstore.as_retriever()
# 测试检索功能,查询与问题最相关的分块文档
resp = retriever.invoke("什么是prompt engineering?")
# 返回的是一个个Document对象
for doc in resp:
print(doc.id + ": " + doc.page_content)
输出:
Embedding dimension: 1024
First few values: [0.021915348, 0.0048826355, -0.09566349, -0.010307786, -0.0025656442, 0.043084737, -0.045955546, 0.011641469, 0.02809776, -0.012489148]
参考资料
- https://docs.siliconflow.cn/cn/api-reference/embeddings/create-embeddings