大数据学习(133)-Hive数据分析2

发布于:2025-06-09 ⋅ 阅读:(17) ⋅ 点赞:(0)

​​​​🍋🍋大数据学习🍋🍋

🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。
💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


十一、分组去重(保留每组最新 / 最早记录)

核心思路
使用窗口函数 ROW_NUMBER() 按分组排序,保留指定顺序的第一条记录。
典型例题:查询每个用户最后一次登录记录。
代码模板

WITH ranked_logins AS (
    SELECT 
        user_id,
        login_date,
        ROW_NUMBER() OVER (
            PARTITION BY user_id 
            ORDER BY login_date DESC  -- 降序取最新,升序取最早
        ) AS rn
    FROM user_login
)
SELECT user_id, login_date
FROM ranked_logins
WHERE rn = 1;

十二、间隔计算(事件时间差分析)

核心思路
用窗口函数 LAG()/LEAD() 获取相邻行的时间值,计算时间间隔。
典型例题:计算用户两次登录的时间间隔(分钟)。
代码模板

SELECT 
    user_id,
    login_date,
    TIMESTAMPDIFF(MINUTE, LAG(login_date) OVER (
        PARTITION BY user_id 
        ORDER BY login_date
    ), login_date) AS interval_minutes
FROM user_login
ORDER BY user_id, login_date;

十三、行列转换(行转列 / 列转行)

核心思路

  • 行转列:用 CASE WHEN 配合聚合函数(如 MAX/SUM)实现。
  • 列转行:用 LATERAL VIEW 或 UNNEST 展开列数据。
    典型例题:将用户月度活跃天数转为列(行转列)。
    代码模板
SELECT 
    user_id,
    MAX(CASE WHEN month = 1 THEN active_days ELSE 0 END) AS jan_active,
    MAX(CASE WHEN month = 2 THEN active_days ELSE 0 END) AS feb_active,
    ...
FROM (
    SELECT 
        user_id,
        MONTH(login_date) AS month,
        COUNT(DISTINCT login_date) AS active_days
    FROM user_login
    GROUP BY user_id, MONTH(login_date)
) t
GROUP BY user_id;

十四、流量路径分析(漏斗模型)

核心思路
用 COUNT(DISTINCT) 按阶段过滤用户,计算各阶段转化率。
典型例题:计算注册→浏览→下单的漏斗转化率。
代码模板

WITH funnel_stages AS (
    SELECT 
        user_id,
        MAX(CASE WHEN event = 'register' THEN 1 ELSE 0 END) AS registered,
        MAX(CASE WHEN event = 'browse' THEN 1 ELSE 0 END) AS browsed,
        MAX(CASE WHEN event = 'order' THEN 1 ELSE 0 END) AS ordered
    FROM user_events
    GROUP BY user_id
)
SELECT 
    SUM(registered) AS total_registrants,
    SUM(browsed)/SUM(registered) AS reg_to_browse_rate,
    SUM(ordered)/SUM(browsed) AS browse_to_order_rate
FROM funnel_stages;

十五、字符串处理(提取、替换、分割)

核心思路
使用字符串函数(如 SUBSTRINGREGEXP_EXTRACTREPLACE)处理非结构化数据。
典型例题:从 URL 中提取域名(如 https://www.example.com/path → example.com)。
代码模板

SELECT 
    url,
    REGEXP_EXTRACT(url, 'https?://(www\\.)?([^/]+)', 2) AS domain
FROM urls;

十六、递归查询(层级结构数据处理)

核心思路
使用 WITH RECURSIVE 递归 CTE 处理树状结构数据(如部门层级、类目层级)。
典型例题:查询所有子部门及其上级部门路径。
代码模板(MySQL 示例):

WITH RECURSIVE dept_hierarchy AS (
    -- 初始节点:根部门
    SELECT dept_id, parent_id, dept_name, CAST(dept_name AS CHAR(100)) AS path
    FROM departments
    WHERE parent_id IS NULL  -- 根节点条件
    
    UNION ALL
    
    -- 递归查询:关联子部门
    SELECT d.dept_id, d.parent_id, d.dept_name, CONCAT(h.path, ' → ', d.dept_name)
    FROM departments d
    JOIN dept_hierarchy h ON d.parent_id = h.dept_id
)
SELECT * FROM dept_hierarchy;

十七、会话分析(用户行为会话划分)

核心思路
通过事件时间间隔划分会话,间隔超过阈值则视为新会话(如 30 分钟无操作)。
典型例题:计算每个用户的会话数及会话时长。
代码模板

WITH session_data AS (
    SELECT 
        user_id,
        event_time,
        -- 生成会话标识:时间差超过30分钟则新会话
        SUM(CASE WHEN TIMESTAMPDIFF(MINUTE, LAG(event_time) OVER (
            PARTITION BY user_id ORDER BY event_time
        ), event_time) > 30 THEN 1 ELSE 0 END) 
        OVER (PARTITION BY user_id ORDER BY event_time) AS session_id
    FROM user_events
)
SELECT 
    user_id,
    session_id,
    MIN(event_time) AS session_start,
    MAX(event_time) AS session_end,
    TIMESTAMPDIFF(MINUTE, MIN(event_time), MAX(event_time)) AS session_duration
FROM session_data
GROUP BY user_id, session_id;

十八、同比环比进阶(跨年度对比)

核心思路
用窗口函数 LAG() 关联去年同期数据,计算同比增长率。
典型例题:计算 2023 年各月销售额同比 2022 年的增长率。
代码模板

WITH monthly_sales AS (
    SELECT 
        YEAR(sale_date) AS year,
        MONTH(sale_date) AS month,
        SUM(amount) AS sales
    FROM sales
    GROUP BY YEAR(sale_date), MONTH(sale_date)
)
SELECT 
    year,
    month,
    sales,
    LAG(sales, 12) OVER (ORDER BY year, month) AS sales_last_year,
    (sales - LAG(sales, 12) OVER (ORDER BY year, month)) / LAG(sales, 12) OVER (ORDER BY year, month) AS yoy_growth
FROM monthly_sales
WHERE year = 2023;

十九、抽样分析(随机采样数据)

核心思路
用 RAND() 生成随机数,配合 WHERE 过滤实现抽样(如抽取 10% 数据)。
典型例题:从订单表中随机抽取 5% 样本用于分析。
代码模板

SELECT *
FROM orders
WHERE RAND() < 0.05;  -- 抽取5%样本

二十、数据透视表(多维度交叉分析)

核心思路
用 GROUP BY 结合聚合函数,按多个维度(如时间、地区、品类)交叉统计。
典型例题:按年份、地区统计各品类销售额占比。
代码模板

WITH category_sales AS (
    SELECT 
        YEAR(sale_date) AS year,
        region,
        category,
        SUM(amount) AS sales
    FROM sales
    GROUP BY YEAR(sale_date), region, category
)
SELECT 
    year,
    region,
    SUM(CASE WHEN category = 'A' THEN sales ELSE 0 END) AS cat_A_sales,
    SUM(CASE WHEN category = 'B' THEN sales ELSE 0 END) AS cat_B_sales,
    SUM(sales) AS total_sales,
    SUM(sales)/SUM(SUM(sales)) OVER (PARTITION BY year, region) AS category_ratio
FROM category_sales
GROUP BY year, region;

网站公告

今日签到

点亮在社区的每一天
去签到