基于Scala实现Flink的三种基本时间窗口操作

发布于:2025-06-11 ⋅ 阅读:(35) ⋅ 点赞:(0)

目录

代码结构

代码解析

(1) 主程序入口

(2) 窗口联结(Window Join)

(3) 间隔联结(Interval Join)

(4) 窗口同组联结(CoGroup)

(5) 执行任务

代码优化

(1) 时间戳分配

(2) 窗口大小

(3) 输出格式

(4) 并行度

优化后的代码


 

这段代码展示了 Apache Flink 中三种不同的流联结操作:窗口联结(Window Join)间隔联结(Interval Join) 和 窗口同组联结(CoGroup)。以下是对代码的详细解析和说明: 

代码结构

  • 包声明package transformplus
    定义了代码所在的包。

  • 导入依赖
    导入了 Flink 相关类库,包括流处理 API、窗口分配器、时间语义等。

  • WindowJoin 对象
    主程序入口,包含三种流联结操作的实现。

package transformplus

import java.lang

import org.apache.flink.api.common.functions.CoGroupFunction
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.util.Collector
import source.Event

/**
 *
 * @PROJECT_NAME: flink1.13
 * @PACKAGE_NAME: transformplus
 * @author: 赵嘉盟-HONOR
 * @data: 2023-12-05 12:05
 * @DESCRIPTION
 *
 */
object WindowJoin {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)
    //TODO 窗口联结(join)
    val stream1 = env.fromElements(
      ("a", 1000L),
      ("b", 1000L),
      ("a", 2000L),
      ("b", 6000L)
    ).assignAscendingTimestamps(_._2)
    val stream2 = env.fromElements(
      ("a", 3000L),
      ("b", 3000L),
      ("a", 4000L),
      ("b", 8000L)
    ).assignAscendingTimestamps(_._2)

    stream1.join(stream2)
      .where(_._1)
      .equalTo(_._1)
      .window(TumblingEventTimeWindows.of(Time.seconds(5)))
      .apply((e1,e2)=>e1+"->"+e2)
      .print("Join")

    //TODO 间隔联结:用户行为事件联系(intervalJoin)
    // 订单事件流
    val orderStream: DataStream[(String, String, Long)] = env
      .fromElements(
        ("Mary", "order-1", 5000L),
        ("Alice", "order-2", 5000L),
        ("Bob", "order-3", 20000L),
        ("Alice", "order-4", 20000L),
        ("Cary", "order-5", 51000L)
      ).assignAscendingTimestamps(_._3)
    // 点击事件流
    val pvStream: DataStream[Event] = env
      .fromElements(
        Event("Bob", "./cart", 2000L),
        Event("Alice", "./prod?id=100", 3000L),
        Event("Alice", "./prod?id=200", 3500L),
        Event("Bob", "./prod?id=2", 2500L),
        Event("Alice", "./prod?id=300", 36000L),
        Event("Bob", "./home", 30000L),
        Event("Bob", "./prod?id=1", 23000L),
        Event("Bob", "./prod?id=3", 33000L)
      ).assignAscendingTimestamps(_.timestamp)

    orderStream.keyBy(_._1)
      .intervalJoin(pvStream.keyBy(_.user))
      .between(Time.seconds(-5),Time.seconds(10))
      .process(new ProcessJoinFunction[(String,String,Long),Event,String] {
        override def processElement(in1: (String, String, Long), in2: Event, context: ProcessJoinFunction[(String, String, Long), Event, String]#Context, collector: Collector[String]): Unit = {
          collector.collect(in1+"=>"+in2)
        }
      }).print("intervalJoin")


    //TODO 窗口同组联结: coGroup(iterable)
    stream1.coGroup(stream2)
      .where(_._1)
      .equalTo(_._1)
      .window(TumblingEventTimeWindows.of(Time.seconds(5)))
      .apply(new CoGroupFunction[(String,Long),(String,Long),String] {
        override def coGroup(iterable: lang.Iterable[(String, Long)], iterable1: lang.Iterable[(String, Long)], collector: Collector[String]): Unit = {
          collector.collect(iterable+"=>"+iterable1)
        }
      }).print("coGroup")
    env.execute("windowJoin")
  }
}

代码解析

(1) 主程序入口
def main(args: Array[String]): Unit = {
  val env = StreamExecutionEnvironment.getExecutionEnvironment
  env.setParallelism(1)
  • 创建 Flink 流处理环境 StreamExecutionEnvironment,并设置并行度为 1。
(2) 窗口联结(Window Join)
val stream1 = env.fromElements(
  ("a", 1000L),
  ("b", 1000L),
  ("a", 2000L),
  ("b", 6000L)
).assignAscendingTimestamps(_._2)

val stream2 = env.fromElements(
  ("a", 3000L),
  ("b", 3000L),
  ("a", 4000L),
  ("b", 8000L)
).assignAscendingTimestamps(_._2)

stream1.join(stream2)
  .where(_._1)
  .equalTo(_._1)
  .window(TumblingEventTimeWindows.of(Time.seconds(5)))
  .apply((e1, e2) => e1 + "->" + e2)
  .print("Join")
  • 数据流:定义了两个流 stream1 和 stream2,分别包含键值对 (String, Long)
  • 时间戳分配:使用 assignAscendingTimestamps 方法为事件分配时间戳。
  • 窗口联结
    • 使用 join 方法将两个流按键(_._1)联结。
    • 使用 TumblingEventTimeWindows 定义 5 秒的滚动窗口。
    • 使用 apply 方法将匹配的事件对拼接成字符串并输出。
(3) 间隔联结(Interval Join)
val orderStream: DataStream[(String, String, Long)] = env
  .fromElements(
    ("Mary", "order-1", 5000L),
    ("Alice", "order-2", 5000L),
    ("Bob", "order-3", 20000L),
    ("Alice", "order-4", 20000L),
    ("Cary", "order-5", 51000L)
  ).assignAscendingTimestamps(_._3)

val pvStream: DataStream[Event] = env
  .fromElements(
    Event("Bob", "./cart", 2000L),
    Event("Alice", "./prod?id=100", 3000L),
    Event("Alice", "./prod?id=200", 3500L),
    Event("Bob", "./prod?id=2", 2500L),
    Event("Alice", "./prod?id=300", 36000L),
    Event("Bob", "./home", 30000L),
    Event("Bob", "./prod?id=1", 23000L),
    Event("Bob", "./prod?id=3", 33000L)
  ).assignAscendingTimestamps(_.timestamp)

orderStream.keyBy(_._1)
  .intervalJoin(pvStream.keyBy(_.user))
  .between(Time.seconds(-5), Time.seconds(10))
  .process(new ProcessJoinFunction[(String, String, Long), Event, String] {
    override def processElement(in1: (String, String, Long), in2: Event, context: ProcessJoinFunction[(String, String, Long), Event, String]#Context, collector: Collector[String]): Unit = {
      collector.collect(in1 + "=>" + in2)
    }
  }).print("intervalJoin")
  • 数据流:定义了两个流 orderStream(订单事件)和 pvStream(点击事件)。
  • 时间戳分配:为事件分配时间戳。
  • 间隔联结
    • 使用 intervalJoin 方法将两个流按键(_._1 和 user)联结。
    • 使用 between 方法定义时间间隔(前 5 秒到后 10 秒)。
    • 使用 process 方法将匹配的事件对拼接成字符串并输出。
(4) 窗口同组联结(CoGroup)
stream1.coGroup(stream2)
  .where(_._1)
  .equalTo(_._1)
  .window(TumblingEventTimeWindows.of(Time.seconds(5)))
  .apply(new CoGroupFunction[(String, Long), (String, Long), String] {
    override def coGroup(iterable: lang.Iterable[(String, Long)], iterable1: lang.Iterable[(String, Long)], collector: Collector[String]): Unit = {
      collector.collect(iterable + "=>" + iterable1)
    }
  }).print("coGroup")
  • 窗口同组联结
    • 使用 coGroup 方法将两个流按键(_._1)联结。
    • 使用 TumblingEventTimeWindows 定义 5 秒的滚动窗口。
    • 使用 apply 方法将匹配的事件集合拼接成字符串并输出。
(5) 执行任务
env.execute("windowJoin")
  • 启动 Flink 流处理任务,任务名称为 windowJoin

代码优化

(1) 时间戳分配
  • assignAscendingTimestamps 方法假设事件时间戳是严格递增的。如果时间戳可能乱序,应使用 assignTimestampsAndWatermarks 方法:

    java

    stream1.assignTimestampsAndWatermarks(
      WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(5))
        .withTimestampAssigner((event: (String, Long), timestamp: Long) => event._2)
    )
(2) 窗口大小
  • 窗口大小(5 秒)可能不适合所有场景。应根据实际需求调整窗口大小。
(3) 输出格式
  • 输出格式较为简单,可以优化为更易读的形式:

    java

    collector.collect(s"Order: ${in1._2}, Click: ${in2.url}")
(4) 并行度
  • 并行度设置为 1,可能影响性能。可以根据集群资源调整并行度:

    java

    env.setParallelism(4)

优化后的代码

以下是优化后的完整代码:

package transformplus

import java.lang
import java.time.Duration

import org.apache.flink.api.common.eventtime.WatermarkStrategy
import org.apache.flink.api.common.functions.CoGroupFunction
import org.apache.flink.streaming.api.functions.co.ProcessJoinFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.util.Collector
import source.Event

object WindowJoin {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(4)

    // 窗口联结
    val stream1 = env.fromElements(
      ("a", 1000L),
      ("b", 1000L),
      ("a", 2000L),
      ("b", 6000L)
    ).assignTimestampsAndWatermarks(
      WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(5))
        .withTimestampAssigner((event: (String, Long), timestamp: Long) => event._2)
    )

    val stream2 = env.fromElements(
      ("a", 3000L),
      ("b", 3000L),
      ("a", 4000L),
      ("b", 8000L)
    ).assignTimestampsAndWatermarks(
      WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(5))
        .withTimestampAssigner((event: (String, Long), timestamp: Long) => event._2)
    )

    stream1.join(stream2)
      .where(_._1)
      .equalTo(_._1)
      .window(TumblingEventTimeWindows.of(Time.seconds(5)))
      .apply((e1, e2) => s"${e1._1} (${e1._2}) -> ${e2._1} (${e2._2})")
      .print("Join")

    // 间隔联结
    val orderStream: DataStream[(String, String, Long)] = env
      .fromElements(
        ("Mary", "order-1", 5000L),
        ("Alice", "order-2", 5000L),
        ("Bob", "order-3", 20000L),
        ("Alice", "order-4", 20000L),
        ("Cary", "order-5", 51000L)
      ).assignTimestampsAndWatermarks(
        WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(5))
          .withTimestampAssigner((event: (String, String, Long), timestamp: Long) => event._3)
      )

    val pvStream: DataStream[Event] = env
      .fromElements(
        Event("Bob", "./cart", 2000L),
        Event("Alice", "./prod?id=100", 3000L),
        Event("Alice", "./prod?id=200", 3500L),
        Event("Bob", "./prod?id=2", 2500L),
        Event("Alice", "./prod?id=300", 36000L),
        Event("Bob", "./home", 30000L),
        Event("Bob", "./prod?id=1", 23000L),
        Event("Bob", "./prod?id=3", 33000L)
      ).assignTimestampsAndWatermarks(
        WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(5))
          .withTimestampAssigner((event: Event, timestamp: Long) => event.timestamp)
      )

    orderStream.keyBy(_._1)
      .intervalJoin(pvStream.keyBy(_.user))
      .between(Time.seconds(-5), Time.seconds(10))
      .process(new ProcessJoinFunction[(String, String, Long), Event, String] {
        override def processElement(in1: (String, String, Long), in2: Event, context: ProcessJoinFunction[(String, String, Long), Event, String]#Context, collector: Collector[String]): Unit = {
          collector.collect(s"Order: ${in1._2}, Click: ${in2.url}")
        }
      }).print("intervalJoin")

    // 窗口同组联结
    stream1.coGroup(stream2)
      .where(_._1)
      .equalTo(_._1)
      .window(TumblingEventTimeWindows.of(Time.seconds(5)))
      .apply(new CoGroupFunction[(String, Long), (String, Long), String] {
        override def coGroup(iterable: lang.Iterable[(String, Long)], iterable1: lang.Iterable[(String, Long)], collector: Collector[String]): Unit = {
          collector.collect(s"Stream1: ${iterable.toString}, Stream2: ${iterable1.toString}")
        }
      }).print("coGroup")

    env.execute("windowJoin")
  }
}

网站公告

今日签到

点亮在社区的每一天
去签到