1. 优化算法相关
蚁群优化算法(ACO)
蚁群优化算法是一种模拟蚂蚁觅食行为的优化技术。以下是一个简化版的ACO用于解决旅行商问题(TSP)的MATLAB代码:
function [bestRoute, minDist] = acoTsp(distMatrix, numAnts, numIterations)
% 初始化参数
nCities = size(distMatrix, 1);
pheromone = ones(nCities) / nCities;
alpha = 1; beta = 5; rho = 0.5;
bestRoute = [];
minDist = inf;
for iter = 1:numIterations
routes = cell(numAnts, 1);
distances = zeros(numAnts, 1);
for ant = 1:numAnts
route = randperm(nCities);
distance = calculateRouteDistance(route, distMatrix);
% 更新最佳路径
if distance < minDist
minDist = distance;
bestRoute = route;
end
routes{ant} = route;
distances(ant) = distance;
end
% 更新信息素
updatePheromones(routes, distances, pheromone, rho, alpha, beta);
end
end
function distance = calculateRouteDistance(route, distMatrix)
nCities = length(route);
distance = sum(distMatrix(sub2ind(size(distMatrix), route(1:end-1), route(2:end)))) + ...
distMatrix(route(end), route(1));
end
function pheromone = updatePheromones(routes, distances, pheromone, rho, alpha, beta)
nCities = size(pheromone, 1);
deltaPheromone = zeros(nCities);
for i = 1:length(routes)
route = routes{i};
for j = 1:(length(route)-1)
deltaPheromone(route(j), route(j+1)) = deltaPheromone(route(j), route(j+1)) + 1/distances(i);
end
end
pheromone = (1-rho) * pheromone + deltaPheromone.^alpha .* (1./distances').^beta;
end
2. 控制器相关
ADRC控制
自抗扰控制器(ADRC)通过估计并补偿系统中的总扰动来增强系统的鲁棒性。下面是一个简单的ADRC控制器设计的MATLAB代码框架:
function u = adrc_control(x, x_dot, r, e, e_dot, b0, h)
% 参数设置
kp = 10; kd = 5; w_c = 20;
% 状态观测器设计
z1 = x;
z2 = x_dot + e/h;
% 扰动估计
f_hat = z2 - x_dot;
% 控制律
v = kp*(r-z1) + kd*(0-e)/h;
u = (v-f_hat)/b0;
end
3. 神经网络相关
BP神经网络
BP神经网络是一种基于误差反向传播算法训练的多层前馈神经网络。以下是在MATLAB中使用trainNetwork
函数训练一个简单的BP神经网络的例子:
% 数据准备
X = rand(10, 100); % 输入数据
Y = rand(5, 100); % 输出目标
% 定义网络架构
layers = [
featureInputLayer(10)
fullyConnectedLayer(20)
reluLayer
fullyConnectedLayer(5)
regressionLayer];
% 设置训练选项
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 10, ...
'InitialLearnRate', 0.01);
% 训练网络
net = trainNetwork(X, Y, layers, options);
% 使用训练好的网络进行预测
YPred = predict(net, X);
以上提供的代码片段仅作为入门指导,实际应用中可能需要根据具体情况调整参数和模型结构。希望这些示例能够帮助你更好地理解和实现各种算法。