DAY 43 复习日

发布于:2025-06-28 ⋅ 阅读:(14) ⋅ 点赞:(0)

kaggle找到一个图像数据集,用cnn网络进行训练并且用grad-cam做可视化

进阶:并拆分成多个文件

10 Big Cats of the Wild - Image Classification

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os

# 设置随机种子确保结果可复现
torch.manual_seed(42)
np.random.seed(42)

# 将 'path/to/your_dataset' 替换为你的数据集所在的根目录
data_dir = './data/10 Big Cats of the Wild - Image Classification'
train_dir = os.path.join(data_dir, 'train')
test_dir = os.path.join(data_dir, 'test')

if not os.path.isdir(data_dir):
    raise FileNotFoundError(
        f"Dataset directory not found at '{data_dir}'. "
        f"Please update the 'data_dir' variable to your dataset's path."
    )

transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集和测试集
trainset = torchvision.datasets.ImageFolder(root=train_dir, transform=transform)
testset = torchvision.datasets.ImageFolder(root=test_dir, transform=transform)

# 从训练数据集中自动获取类别名称和数量
classes = trainset.classes
num_classes = len(classes)
print(f"从数据集中找到 {num_classes} 个类别: {classes}")

# 创建数据加载器
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2)


# --- MODIFICATION 3: 动态调整CNN模型以适应你的数据集 ---
class SimpleCNN(nn.Module):
    def __init__(self, num_classes): # 将类别数量作为参数传入
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        # 输入特征数128 * 4 * 4取决于输入图像大小和网络结构。
        # 由于我们将所有图像调整为32x32,经过3次2x2的池化后,尺寸变为 32 -> 16 -> 8 -> 4。所以这里是4*4。
        self.fc1 = nn.Linear(128 * 4 * 4, 512)
        # **重要**: 输出层的大小现在由num_classes决定
        self.fc2 = nn.Linear(512, num_classes)
        
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))  
        x = self.pool(F.relu(self.conv2(x)))  
        x = self.pool(F.relu(self.conv3(x)))  
        x = x.view(-1, 128 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 初始化模型,传入你的数据集的类别数量
model = SimpleCNN(num_classes=num_classes)
print("模型已创建")

# 如果有GPU则使用GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# 训练模型函数 (现在使用传入的trainloader)
def train_model(model, trainloader, epochs=5): # 增加训练周期以获得更好效果
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    
    print("开始训练...")
    for epoch in range(epochs):
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)
            
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            running_loss += loss.item()
            if i % 100 == 99:
                print(f'[{epoch + 1}, {i + 1:5d}] 损失: {running_loss / 100:.3f}')
                running_loss = 0.0
    
    print("训练完成")

# 定义模型保存路径
model_save_path = 'my_custom_cnn.pth'

# 尝试加载预训练模型
try:
    model.load_state_dict(torch.load(model_save_path))
    print(f"已从 '{model_save_path}' 加载预训练模型")
except FileNotFoundError:
    print("无法加载预训练模型,将开始训练新模型。")
    train_model(model, trainloader, epochs=5) # 训练新模型
    torch.save(model.state_dict(), model_save_path) # 保存训练好的模型
    print(f"新模型已训练并保存至 '{model_save_path}'")

# 设置模型为评估模式
model.eval()

# Grad-CAM实现 (这部分无需修改)
class GradCAM:
    def __init__(self, model, target_layer):
        self.model = model
        self.target_layer = target_layer
        self.gradients = None
        self.activations = None
        self.register_hooks()
        
    def register_hooks(self):
        def forward_hook(module, input, output):
            self.activations = output.detach()
        def backward_hook(module, grad_input, grad_output):
            self.gradients = grad_output[0].detach()
        self.target_layer.register_forward_hook(forward_hook)
        self.target_layer.register_backward_hook(backward_hook)
    
    def generate_cam(self, input_image, target_class=None):
        model_output = self.model(input_image)
        if target_class is None:
            target_class = torch.argmax(model_output, dim=1).item()
        
        self.model.zero_grad()
        one_hot = torch.zeros_like(model_output)
        one_hot[0, target_class] = 1
        model_output.backward(gradient=one_hot, retain_graph=True) # retain_graph=True可能需要
        
        gradients = self.gradients
        activations = self.activations
        weights = torch.mean(gradients, dim=(2, 3), keepdim=True)
        cam = torch.sum(weights * activations, dim=1, keepdim=True)
        cam = F.relu(cam)
        
        cam = F.interpolate(cam, size=(32, 32), mode='bilinear', align_corners=False)
        cam = cam - cam.min()
        cam = cam / cam.max() if cam.max() > 0 else cam
        
        return cam.cpu().squeeze().numpy(), target_class

grad_cam = GradCAM(model, model.conv3)

# 从测试集中获取一张图片
img, label = testset[0]
img_tensor = img.unsqueeze(0).to(device)

# 生成CAM
cam, predicted_class_idx = grad_cam.generate_cam(img_tensor)

# 可视化结果
def visualize_cam(img, cam, predicted_class, true_class):
    img = img.permute(1, 2, 0).numpy() # 转换回 (H, W, C)
    # 反归一化以便显示
    img = img * 0.5 + 0.5
    img = np.clip(img, 0, 1)

    heatmap = plt.cm.jet(cam)
    heatmap = heatmap[:, :, :3] # 去掉alpha通道

    overlay = heatmap * 0.4 + img * 0.6
    
    plt.figure(figsize=(10, 5))
    plt.subplot(1, 3, 1)
    plt.imshow(img)
    plt.title(f'Original Image\nTrue: {true_class}')
    plt.axis('off')

    plt.subplot(1, 3, 2)
    plt.imshow(heatmap)
    plt.title('Grad-CAM Heatmap')
    plt.axis('off')

    plt.subplot(1, 3, 3)
    plt.imshow(overlay)
    plt.title(f'Overlay\nPredicted: {predicted_class}')
    plt.axis('off')
    
    plt.show()

# 显示结果
predicted_class_name = classes[predicted_class_idx]
true_class_name = classes[label]
visualize_cam(img, cam, predicted_class_name, true_class_name)


网站公告

今日签到

点亮在社区的每一天
去签到