Android运行时ART加载OAT文件的过程

发布于:2025-07-19 ⋅ 阅读:(15) ⋅ 点赞:(0)

目录

一,概述

 1.1 OAT是如何产生的


一,概述

OAT文件是一种Android私有ELF文件格式,它不仅包含有从DEX文件翻译而来的本地机器指令,还包含有原来的DEX文件内容。这使得我们无需重新编译原有的APK就可以让它正常地在ART里面运行,也就是我们不需要改变原来的APK编程接口

为了更好了弄明白oat文件的格式,目前还需要看下elf 文件格式

oat文件格式

作为Android私有的一种ELF文件,OAT文件包含有两个特殊的段oatdata和oatexec,前者包含有用来生成本地机器指令的dex文件内容,后者包含有生成的本地机器指令,它们之间的关系通过储存在oatdata段前面的oat头部描述。此外,在OAT文件的dynamic段,导出了三个符号oatdata、oatexec和oatlastword,它们的值就是用来界定oatdata段和oatexec段的起止位置的。其中,[oatdata, oatexec - 1]描述的是oatdata段的起止位置,而[oatexec, oatlastword + 3]描述的是oatexec的起止位置。要完全理解OAT的文件格式,除了要理解本文即将要分析的OAT加载过程之外,还需要掌握接下来文章分析的类和方法查找过程。


 1.1 OAT是如何产生的

/Volumes/aosp/android-8.1.0_r52/frameworks/native/cmds/installd/dexopt.cpp

static void run_dex2oat(int zip_fd, int oat_fd, int input_vdex_fd, int output_vdex_fd, int image_fd,
        const char* input_file_name, const char* output_file_name, int swap_fd,
        const char* instruction_set, const char* compiler_filter,
        bool debuggable, bool post_bootcomplete, int profile_fd, const char* class_loader_context) {
    static const unsigned int MAX_INSTRUCTION_SET_LEN = 7;

    if (strlen(instruction_set) >= MAX_INSTRUCTION_SET_LEN) {
        ALOGE("Instruction set %s longer than max length of %d",
              instruction_set, MAX_INSTRUCTION_SET_LEN);
        return;
    }

    // Get the relative path to the input file.
    const char* relative_input_file_name = get_location_from_path(input_file_name);

    char dex2oat_Xms_flag[kPropertyValueMax];
    bool have_dex2oat_Xms_flag = get_property("dalvik.vm.dex2oat-Xms", dex2oat_Xms_flag, NULL) > 0;

    char dex2oat_Xmx_flag[kPropertyValueMax];
    bool have_dex2oat_Xmx_flag = get_property("dalvik.vm.dex2oat-Xmx", dex2oat_Xmx_flag, NULL) > 0;

    char dex2oat_threads_buf[kPropertyValueMax];
    bool have_dex2oat_threads_flag = get_property(post_bootcomplete
                                                      ? "dalvik.vm.dex2oat-threads"
                                                      : "dalvik.vm.boot-dex2oat-threads",
                                                  dex2oat_threads_buf,
                                                  NULL) > 0;
    char dex2oat_threads_arg[kPropertyValueMax + 2];
    if (have_dex2oat_threads_flag) {
        sprintf(dex2oat_threads_arg, "-j%s", dex2oat_threads_buf);
    }

    char dex2oat_isa_features_key[kPropertyKeyMax];
    sprintf(dex2oat_isa_features_key, "dalvik.vm.isa.%s.features", instruction_set);
    char dex2oat_isa_features[kPropertyValueMax];
    bool have_dex2oat_isa_features = get_property(dex2oat_isa_features_key,
                                                  dex2oat_isa_features, NULL) > 0;

    char dex2oat_isa_variant_key[kPropertyKeyMax];
    sprintf(dex2oat_isa_variant_key, "dalvik.vm.isa.%s.variant", instruction_set);
    char dex2oat_isa_variant[kPropertyValueMax];
    bool have_dex2oat_isa_variant = get_property(dex2oat_isa_variant_key,
                                                 dex2oat_isa_variant, NULL) > 0;

    const char *dex2oat_norelocation = "-Xnorelocate";
    bool have_dex2oat_relocation_skip_flag = false;

    char dex2oat_flags[kPropertyValueMax];
    int dex2oat_flags_count = get_property("dalvik.vm.dex2oat-flags",
                                 dex2oat_flags, NULL) <= 0 ? 0 : split_count(dex2oat_flags);
    ALOGV("dalvik.vm.dex2oat-flags=%s\n", dex2oat_flags);

    // If we are booting without the real /data, don't spend time compiling.
    char vold_decrypt[kPropertyValueMax];
    bool have_vold_decrypt = get_property("vold.decrypt", vold_decrypt, "") > 0;
    bool skip_compilation = (have_vold_decrypt &&
                             (strcmp(vold_decrypt, "trigger_restart_min_framework") == 0 ||
                             (strcmp(vold_decrypt, "1") == 0)));

    bool generate_debug_info = property_get_bool("debug.generate-debug-info", false);

    char app_image_format[kPropertyValueMax];
    char image_format_arg[strlen("--image-format=") + kPropertyValueMax];
    bool have_app_image_format =
            image_fd >= 0 && get_property("dalvik.vm.appimageformat", app_image_format, NULL) > 0;
    if (have_app_image_format) {
        sprintf(image_format_arg, "--image-format=%s", app_image_format);
    }

    char dex2oat_large_app_threshold[kPropertyValueMax];
    bool have_dex2oat_large_app_threshold =
            get_property("dalvik.vm.dex2oat-very-large", dex2oat_large_app_threshold, NULL) > 0;
    char dex2oat_large_app_threshold_arg[strlen("--very-large-app-threshold=") + kPropertyValueMax];
    if (have_dex2oat_large_app_threshold) {
        sprintf(dex2oat_large_app_threshold_arg,
                "--very-large-app-threshold=%s",
                dex2oat_large_app_threshold);
    }

    static const char* DEX2OAT_BIN = "/system/bin/dex2oat";

    static const char* RUNTIME_ARG = "--runtime-arg";

    static const int MAX_INT_LEN = 12;      // '-'+10dig+'\0' -OR- 0x+8dig

    // clang FORTIFY doesn't let us use strlen in constant array bounds, so we
    // use arraysize instead.
    char zip_fd_arg[arraysize("--zip-fd=") + MAX_INT_LEN];
    char zip_location_arg[arraysize("--zip-location=") + PKG_PATH_MAX];
    char input_vdex_fd_arg[arraysize("--input-vdex-fd=") + MAX_INT_LEN];
    char output_vdex_fd_arg[arraysize("--output-vdex-fd=") + MAX_INT_LEN];
    char oat_fd_arg[arraysize("--oat-fd=") + MAX_INT_LEN];
    char oat_location_arg[arraysize("--oat-location=") + PKG_PATH_MAX];
    char instruction_set_arg[arraysize("--instruction-set=") + MAX_INSTRUCTION_SET_LEN];
    char instruction_set_variant_arg[arraysize("--instruction-set-variant=") + kPropertyValueMax];
    char instruction_set_features_arg[arraysize("--instruction-set-features=") + kPropertyValueMax];
    char dex2oat_Xms_arg[arraysize("-Xms") + kPropertyValueMax];
    char dex2oat_Xmx_arg[arraysize("-Xmx") + kPropertyValueMax];
    char dex2oat_compiler_filter_arg[arraysize("--compiler-filter=") + kPropertyValueMax];
    bool have_dex2oat_swap_fd = false;
    char dex2oat_swap_fd[arraysize("--swap-fd=") + MAX_INT_LEN];
    bool have_dex2oat_image_fd = false;
    char dex2oat_image_fd[arraysize("--app-image-fd=") + MAX_INT_LEN];
    size_t class_loader_context_size = arraysize("--class-loader-context=") + PKG_PATH_MAX;
    char class_loader_context_arg[class_loader_context_size];
    if (class_loader_context != nullptr) {
        snprintf(class_loader_context_arg, class_loader_context_size, "--class-loader-context=%s",
            class_loader_context);
    }

    sprintf(zip_fd_arg, "--zip-fd=%d", zip_fd);
    sprintf(zip_location_arg, "--zip-location=%s", relative_input_file_name);
    sprintf(input_vdex_fd_arg, "--input-vdex-fd=%d", input_vdex_fd);
    sprintf(output_vdex_fd_arg, "--output-vdex-fd=%d", output_vdex_fd);
    sprintf(oat_fd_arg, "--oat-fd=%d", oat_fd);
    sprintf(oat_location_arg, "--oat-location=%s", output_file_name);
    sprintf(instruction_set_arg, "--instruction-set=%s", instruction_set);
    sprintf(instruction_set_variant_arg, "--instruction-set-variant=%s", dex2oat_isa_variant);
    sprintf(instruction_set_features_arg, "--instruction-set-features=%s", dex2oat_isa_features);
    if (swap_fd >= 0) {
        have_dex2oat_swap_fd = true;
        sprintf(dex2oat_swap_fd, "--swap-fd=%d", swap_fd);
    }
    if (image_fd >= 0) {
        have_dex2oat_image_fd = true;
        sprintf(dex2oat_image_fd, "--app-image-fd=%d", image_fd);
    }

    if (have_dex2oat_Xms_flag) {
        sprintf(dex2oat_Xms_arg, "-Xms%s", dex2oat_Xms_flag);
    }
    if (have_dex2oat_Xmx_flag) {
        sprintf(dex2oat_Xmx_arg, "-Xmx%s", dex2oat_Xmx_flag);
    }

    // Compute compiler filter.

    bool have_dex2oat_compiler_filter_flag = false;
    if (skip_compilation) {
        strcpy(dex2oat_compiler_filter_arg, "--compiler-filter=extract");
        have_dex2oat_compiler_filter_flag = true;
        have_dex2oat_relocation_skip_flag = true;
    } else if (compiler_filter != nullptr) {
        if (strlen(compiler_filter) + strlen("--compiler-filter=") <
                    arraysize(dex2oat_compiler_filter_arg)) {
            sprintf(dex2oat_compiler_filter_arg, "--compiler-filter=%s", compiler_filter);
            have_dex2oat_compiler_filter_flag = true;
        } else {
            ALOGW("Compiler filter name '%s' is too large (max characters is %zu)",
                  compiler_filter,
                  kPropertyValueMax);
        }
    }

    if (!have_dex2oat_compiler_filter_flag) {
        char dex2oat_compiler_filter_flag[kPropertyValueMax];
        have_dex2oat_compiler_filter_flag = get_property("dalvik.vm.dex2oat-filter",
                                                         dex2oat_compiler_filter_flag, NULL) > 0;
        if (have_dex2oat_compiler_filter_flag) {
            sprintf(dex2oat_compiler_filter_arg,
                    "--compiler-filter=%s",
                    dex2oat_compiler_filter_flag);
        }
    }

    // Check whether all apps should be compiled debuggable.
    if (!debuggable) {
        char prop_buf[kPropertyValueMax];
        debuggable =
                (get_property("dalvik.vm.always_debuggable", prop_buf, "0") > 0) &&
                (prop_buf[0] == '1');
    }
    char profile_arg[strlen("--profile-file-fd=") + MAX_INT_LEN];
    if (profile_fd != -1) {
        sprintf(profile_arg, "--profile-file-fd=%d", profile_fd);
    }

    // Get the directory of the apk to pass as a base classpath directory.
    char base_dir[arraysize("--classpath-dir=") + PKG_PATH_MAX];
    std::string apk_dir(input_file_name);
    unsigned long dir_index = apk_dir.rfind('/');
    bool has_base_dir = dir_index != std::string::npos;
    if (has_base_dir) {
        apk_dir = apk_dir.substr(0, dir_index);
        sprintf(base_dir, "--classpath-dir=%s", apk_dir.c_str());
    }


    ALOGV("Running %s in=%s out=%s\n", DEX2OAT_BIN, relative_input_file_name, output_file_name);

    const char* argv[9  // program name, mandatory arguments and the final NULL
                     + (have_dex2oat_isa_variant ? 1 : 0)
                     + (have_dex2oat_isa_features ? 1 : 0)
                     + (have_dex2oat_Xms_flag ? 2 : 0)
                     + (have_dex2oat_Xmx_flag ? 2 : 0)
                     + (have_dex2oat_compiler_filter_flag ? 1 : 0)
                     + (have_dex2oat_threads_flag ? 1 : 0)
                     + (have_dex2oat_swap_fd ? 1 : 0)
                     + (have_dex2oat_image_fd ? 1 : 0)
                     + (have_dex2oat_relocation_skip_flag ? 2 : 0)
                     + (generate_debug_info ? 1 : 0)
                     + (debuggable ? 1 : 0)
                     + (have_app_image_format ? 1 : 0)
                     + dex2oat_flags_count
                     + (profile_fd == -1 ? 0 : 1)
                     + (class_loader_context != nullptr ? 1 : 0)
                     + (has_base_dir ? 1 : 0)
                     + (have_dex2oat_large_app_threshold ? 1 : 0)];
    int i = 0;
    argv[i++] = DEX2OAT_BIN;
    argv[i++] = zip_fd_arg;
    argv[i++] = zip_location_arg;
    argv[i++] = input_vdex_fd_arg;
    argv[i++] = output_vdex_fd_arg;
    argv[i++] = oat_fd_arg;
    argv[i++] = oat_location_arg;
    argv[i++] = instruction_set_arg;
    if (have_dex2oat_isa_variant) {
        argv[i++] = instruction_set_variant_arg;
    }
    if (have_dex2oat_isa_features) {
        argv[i++] = instruction_set_features_arg;
    }
    if (have_dex2oat_Xms_flag) {
        argv[i++] = RUNTIME_ARG;
        argv[i++] = dex2oat_Xms_arg;
    }
    if (have_dex2oat_Xmx_flag) {
        argv[i++] = RUNTIME_ARG;
        argv[i++] = dex2oat_Xmx_arg;
    }
    if (have_dex2oat_compiler_filter_flag) {
        argv[i++] = dex2oat_compiler_filter_arg;
    }
    if (have_dex2oat_threads_flag) {
        argv[i++] = dex2oat_threads_arg;
    }
    if (have_dex2oat_swap_fd) {
        argv[i++] = dex2oat_swap_fd;
    }
    if (have_dex2oat_image_fd) {
        argv[i++] = dex2oat_image_fd;
    }
    if (generate_debug_info) {
        argv[i++] = "--generate-debug-info";
    }
    if (debuggable) {
        argv[i++] = "--debuggable";
    }
    if (have_app_image_format) {
        argv[i++] = image_format_arg;
    }
    if (have_dex2oat_large_app_threshold) {
        argv[i++] = dex2oat_large_app_threshold_arg;
    }
    if (dex2oat_flags_count) {
        i += split(dex2oat_flags, argv + i);
    }
    if (have_dex2oat_relocation_skip_flag) {
        argv[i++] = RUNTIME_ARG;
        argv[i++] = dex2oat_norelocation;
    }
    if (profile_fd != -1) {
        argv[i++] = profile_arg;
    }
    if (has_base_dir) {
        argv[i++] = base_dir;
    }
    if (class_loader_context != nullptr) {
        argv[i++] = class_loader_context_arg;
    }

    // Do not add after dex2oat_flags, they should override others for debugging.
    argv[i] = NULL;

    execv(DEX2OAT_BIN, (char * const *)argv);
    ALOGE("execv(%s) failed: %s\n", DEX2OAT_BIN, strerror(errno));
}

其中,参数zip_fd和oat_fd都是打开文件描述符,指向的分别是正在安装的APK文件和要生成的OAT文件。OAT文件的生成过程主要就是涉及到将包含在APK里面的classes.dex文件的DEX字节码翻译成本地机器指令。这相当于是编写一个输入文件为DEX、输出文件为OAT的编译器
 当我们选择了ART运行时时,Zygote进程在启动的过程中,会调用libart.so里面的函数JNI_CreateJavaVM来创建一个ART

/Volumes/aosp/android-8.1.0_r52/art/runtime/java_vm_ext.cc

extern "C" jint JNI_CreateJavaVM(JavaVM** p_vm, JNIEnv** p_env, void* vm_args) {
  ScopedTrace trace(__FUNCTION__);
  const JavaVMInitArgs* args = static_cast<JavaVMInitArgs*>(vm_args);
  if (JavaVMExt::IsBadJniVersion(args->version)) {
    LOG(ERROR) << "Bad JNI version passed to CreateJavaVM: " << args->version;
    return JNI_EVERSION;
  }
  RuntimeOptions options;
  for (int i = 0; i < args->nOptions; ++i) {
    JavaVMOption* option = &args->options[i];
    options.push_back(std::make_pair(std::string(option->optionString), option->extraInfo));
  }
  bool ignore_unrecognized = args->ignoreUnrecognized;
  if (!Runtime::Create(options, ignore_unrecognized)) {
    return JNI_ERR;
  }

  // Initialize native loader. This step makes sure we have
  // everything set up before we start using JNI.
  android::InitializeNativeLoader();

  Runtime* runtime = Runtime::Current();
  bool started = runtime->Start();
  if (!started) {
    delete Thread::Current()->GetJniEnv();
    delete runtime->GetJavaVM();
    LOG(WARNING) << "CreateJavaVM failed";
    return JNI_ERR;
  }

  *p_env = Thread::Current()->GetJniEnv();
  *p_vm = runtime->GetJavaVM();
  return JNI_OK;
}

参数vm_args用作ART虚拟机的启动参数,它被转换为一个JavaVMInitArgs对象后,再按照Key-Value的组织形式保存一个Options向量中,并且以该向量作为参数传递给Runtime类的静态成员函数Create。

        Runtime类的静态成员函数Create负责在进程中创建一个ART虚拟机。创建成功后,就调用Runtime类的另外一个静态成员函数Start启动该ART虚拟机。注意,这个创建ART虚拟的动作只会在Zygote进程中执行,SystemServer系统进程以及Android应用程序进程的ART虚拟机都是直接从Zygote进程fork出来共享的。这与Dalvik虚拟机的创建方式是完全一样的。

       接下来我们就重点分析Runtime类的静态成员函数Create,它的实现如下所示

/Volumes/aosp/android-8.1.0_r52/art/runtime/runtime.cc

bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
  // TODO: acquire a static mutex on Runtime to avoid racing.
  if (Runtime::instance_ != nullptr) {
    return false;
  }
  instance_ = new Runtime;
  Locks::SetClientCallback(IsSafeToCallAbort);
  if (!instance_->Init(std::move(runtime_options))) {
    // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
    // leak memory, instead. Fix the destructor. b/19100793.
    // delete instance_;
    instance_ = nullptr;
    return false;
  }
  return true;
}

instance_是Runtime类的静态成员变量,它指向进程中的一个Runtime单例。这个Runtime单例描述的就是当前进程的ART虚拟机实例。

       函数首先判断当前进程是否已经创建有一个ART虚拟机实例了。如果有的话,函数就立即返回。否则的话,就创建一个ART虚拟机实例,并且保存在Runtime类的静态成员变量instance_中,最后调用Runtime类的成员函数Init对该新创建的ART虚拟机进行初始化。

       Runtime类的成员函数Init的实现如下所示:
 

bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
  // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
  // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
  env_snapshot_.TakeSnapshot();

  RuntimeArgumentMap runtime_options(std::move(runtime_options_in));
  ScopedTrace trace(__FUNCTION__);
  CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);

  MemMap::Init();

  // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
  // If we cannot reserve it, log a warning.
  // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
  //       is out-of-the-way enough that it should not collide with boot image mapping.
  // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
  //       leading to logspam.
  {
    constexpr uintptr_t kSentinelAddr =
        RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
    protected_fault_page_.reset(MemMap::MapAnonymous("Sentinel fault page",
                                                     reinterpret_cast<uint8_t*>(kSentinelAddr),
                                                     kPageSize,
                                                     PROT_NONE,
                                                     /* low_4g */ true,
                                                     /* reuse */ false,
                                                     /* error_msg */ nullptr));
    if (protected_fault_page_ == nullptr) {
      LOG(WARNING) << "Could not reserve sentinel fault page";
    } else if (reinterpret_cast<uintptr_t>(protected_fault_page_->Begin()) != kSentinelAddr) {
      LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
      protected_fault_page_.reset();
    }
  }

  using Opt = RuntimeArgumentMap;
  VLOG(startup) << "Runtime::Init -verbose:startup enabled";

  QuasiAtomic::Startup();

  oat_file_manager_ = new OatFileManager;

  Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
  Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
                runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));

  boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
  class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
  properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);

  compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
  patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
  must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
  is_zygote_ = runtime_options.Exists(Opt::Zygote);
  is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
  dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
  image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
  dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);

  vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
  exit_ = runtime_options.GetOrDefault(Opt::HookExit);
  abort_ = runtime_options.GetOrDefault(Opt::HookAbort);

  default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
  use_tombstoned_traces_ = runtime_options.GetOrDefault(Opt::UseTombstonedTraces);
#if !defined(ART_TARGET_ANDROID)
  CHECK(!use_tombstoned_traces_)
      << "-Xusetombstonedtraces is only supported in an Android environment";
#endif
  stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);

  compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
  compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
  for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
    if (option.starts_with("--debuggable")) {
      SetJavaDebuggable(true);
      break;
    }
  }
  image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
  image_location_ = runtime_options.GetOrDefault(Opt::Image);

  max_spins_before_thin_lock_inflation_ =
      runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);

  monitor_list_ = new MonitorList;
  monitor_pool_ = MonitorPool::Create();
  thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
  intern_table_ = new InternTable;

  verify_ = runtime_options.GetOrDefault(Opt::Verify);
  allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);

  no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
  force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);

  Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);

  fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);

  if (runtime_options.GetOrDefault(Opt::Interpret)) {
    GetInstrumentation()->ForceInterpretOnly();
  }

  zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
  experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
  is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
  madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);

  plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
  agents_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
  // TODO Add back in -agentlib
  // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
  //   agents_.push_back(lib);
  // }

  float foreground_heap_growth_multiplier;
  if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
    // If low memory mode, use 1.0 as the multiplier by default.
    foreground_heap_growth_multiplier = 1.0f;
  } else {
    foreground_heap_growth_multiplier =
        runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
            kExtraDefaultHeapGrowthMultiplier;
  }
  XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
  heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
                       runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
                       runtime_options.GetOrDefault(Opt::HeapMinFree),
                       runtime_options.GetOrDefault(Opt::HeapMaxFree),
                       runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
                       foreground_heap_growth_multiplier,
                       runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
                       runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
                       runtime_options.GetOrDefault(Opt::Image),
                       runtime_options.GetOrDefault(Opt::ImageInstructionSet),
                       // Override the collector type to CC if the read barrier config.
                       kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
                       kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
                                       : runtime_options.GetOrDefault(Opt::BackgroundGc),
                       runtime_options.GetOrDefault(Opt::LargeObjectSpace),
                       runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
                       runtime_options.GetOrDefault(Opt::ParallelGCThreads),
                       runtime_options.GetOrDefault(Opt::ConcGCThreads),
                       runtime_options.Exists(Opt::LowMemoryMode),
                       runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
                       runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
                       runtime_options.Exists(Opt::IgnoreMaxFootprint),
                       runtime_options.GetOrDefault(Opt::UseTLAB),
                       xgc_option.verify_pre_gc_heap_,
                       xgc_option.verify_pre_sweeping_heap_,
                       xgc_option.verify_post_gc_heap_,
                       xgc_option.verify_pre_gc_rosalloc_,
                       xgc_option.verify_pre_sweeping_rosalloc_,
                       xgc_option.verify_post_gc_rosalloc_,
                       xgc_option.gcstress_,
                       xgc_option.measure_,
                       runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
                       runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));

  if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
    LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
    return false;
  }

  dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);

  if (runtime_options.Exists(Opt::JdwpOptions)) {
    Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions));
  }
  callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
  callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());

  jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
  if (IsAotCompiler()) {
    // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
    // this case.
    // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
    // null and we don't create the jit.
    jit_options_->SetUseJitCompilation(false);
    jit_options_->SetSaveProfilingInfo(false);
  }

  // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
  // can't be trimmed as easily.
  const bool use_malloc = IsAotCompiler();
  arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
  jit_arena_pool_.reset(
      new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));

  if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
    // 4gb, no malloc. Explanation in header.
    low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
  }
  linear_alloc_.reset(CreateLinearAlloc());

  BlockSignals();
  InitPlatformSignalHandlers();

  // Change the implicit checks flags based on runtime architecture.
  switch (kRuntimeISA) {
    case kArm:
    case kThumb2:
    case kX86:
    case kArm64:
    case kX86_64:
    case kMips:
    case kMips64:
      implicit_null_checks_ = true;
      // Installing stack protection does not play well with valgrind.
      implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
      break;
    default:
      // Keep the defaults.
      break;
  }

  if (!no_sig_chain_) {
    // Dex2Oat's Runtime does not need the signal chain or the fault handler.
    if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
      fault_manager.Init();

      // These need to be in a specific order.  The null point check handler must be
      // after the suspend check and stack overflow check handlers.
      //
      // Note: the instances attach themselves to the fault manager and are handled by it. The manager
      //       will delete the instance on Shutdown().
      if (implicit_suspend_checks_) {
        new SuspensionHandler(&fault_manager);
      }

      if (implicit_so_checks_) {
        new StackOverflowHandler(&fault_manager);
      }

      if (implicit_null_checks_) {
        new NullPointerHandler(&fault_manager);
      }

      if (kEnableJavaStackTraceHandler) {
        new JavaStackTraceHandler(&fault_manager);
      }
    }
  }

  std::string error_msg;
  java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
  if (java_vm_.get() == nullptr) {
    LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
    return false;
  }

  // Add the JniEnv handler.
  // TODO Refactor this stuff.
  java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);

  Thread::Startup();

  // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
  // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
  // thread, we do not get a java peer.
  Thread* self = Thread::Attach("main", false, nullptr, false);
  CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
  CHECK(self != nullptr);

  self->SetCanCallIntoJava(!IsAotCompiler());

  // Set us to runnable so tools using a runtime can allocate and GC by default
  self->TransitionFromSuspendedToRunnable();

  // Now we're attached, we can take the heap locks and validate the heap.
  GetHeap()->EnableObjectValidation();

  CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
  if (UNLIKELY(IsAotCompiler())) {
    class_linker_ = new AotClassLinker(intern_table_);
  } else {
    class_linker_ = new ClassLinker(intern_table_);
  }
  if (GetHeap()->HasBootImageSpace()) {
    bool result = class_linker_->InitFromBootImage(&error_msg);
    if (!result) {
      LOG(ERROR) << "Could not initialize from image: " << error_msg;
      return false;
    }
    if (kIsDebugBuild) {
      for (auto image_space : GetHeap()->GetBootImageSpaces()) {
        image_space->VerifyImageAllocations();
      }
    }
    if (boot_class_path_string_.empty()) {
      // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
      const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
      std::vector<std::string> dex_locations;
      dex_locations.reserve(boot_class_path.size());
      for (const DexFile* dex_file : boot_class_path) {
        dex_locations.push_back(dex_file->GetLocation());
      }
      boot_class_path_string_ = android::base::Join(dex_locations, ':');
    }
    {
      ScopedTrace trace2("AddImageStringsToTable");
      GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
    }
    if (IsJavaDebuggable()) {
      // Now that we have loaded the boot image, deoptimize its methods if we are running
      // debuggable, as the code may have been compiled non-debuggable.
      DeoptimizeBootImage();
    }
  } else {
    std::vector<std::string> dex_filenames;
    Split(boot_class_path_string_, ':', &dex_filenames);

    std::vector<std::string> dex_locations;
    if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
      dex_locations = dex_filenames;
    } else {
      dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
      CHECK_EQ(dex_filenames.size(), dex_locations.size());
    }

    std::vector<std::unique_ptr<const DexFile>> boot_class_path;
    if (runtime_options.Exists(Opt::BootClassPathDexList)) {
      boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
    } else {
      OpenDexFiles(dex_filenames,
                   dex_locations,
                   runtime_options.GetOrDefault(Opt::Image),
                   &boot_class_path);
    }
    instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
    if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
      LOG(ERROR) << "Could not initialize without image: " << error_msg;
      return false;
    }

    // TODO: Should we move the following to InitWithoutImage?
    SetInstructionSet(instruction_set_);
    for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
      CalleeSaveType type = CalleeSaveType(i);
      if (!HasCalleeSaveMethod(type)) {
        SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
      }
    }
  }

  CHECK(class_linker_ != nullptr);

  verifier::MethodVerifier::Init();

  if (runtime_options.Exists(Opt::MethodTrace)) {
    trace_config_.reset(new TraceConfig());
    trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
    trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
    trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
    trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
        Trace::TraceOutputMode::kStreaming :
        Trace::TraceOutputMode::kFile;
  }

  // TODO: move this to just be an Trace::Start argument
  Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));

  // Pre-allocate an OutOfMemoryError for the double-OOME case.
  self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
                          "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
                          "no stack trace available");
  pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>....
......}

 

创建好ART虚拟机堆后,Runtime类的成员函数Init接着又创建了一个JavaVMExt实例。这个JavaVMExt实例最终是要返回给调用者的,使得调用者可以通过该JavaVMExt实例来和ART虚拟机交互。再接下来,Runtime类的成员函数Init通过Thread类的成员函数Attach将当前线程作为ART虚拟机的主线程,使得当前线程可以调用ART虚拟机提供的JNI接口
 

Runtime类的成员函数GetHeap返回的便是当前ART虚拟机的堆,也就是前面创建的ART虚拟机堆。通过调用Heap类的成员函数GetContinuousSpaces可以获得堆里面的连续空间列表。如果这个列表的第一个连续空间是一个Image空间,那么就调用ClassLinker类的静态成员函数CreateFromImage来创建一个ClassLinker对象。否则的话,上述ClassLinker对象就要通过ClassLinker类的另外一个静态成员函数CreateFromCompiler来创建。创建出来的ClassLinker对象是后面ART虚拟机加载加载Java类时要用到的。

       后面我们分析ART虚拟机的垃圾收集机制时会看到,ART虚拟机的堆包含有三个连续空间和一个不连续空间。三个连续空间分别用来分配不同的对象。当第一个连续空间不是Image空间时,就表明当前进程不是Zygote进程,而是安装应用程序时启动的一个dex2oat进程。安装应用程序时启动的dex2oat进程也会在内部创建一个ART虚拟机,不过这个ART虚拟机是用来将DEX字节码编译成本地机器指令的,而Zygote进程创建的ART虚拟机是用来运行应用程序的。

       接下来我们主要分析ParsedOptions类的静态成员函数Create和ART虚拟机堆Heap的构造函数,以便可以了解ART虚拟机的启动参数解析过程和ART虚拟机的堆创建过程。
 Heap类的构造函数的


网站公告

今日签到

点亮在社区的每一天
去签到