技术点目录
—————————————————————————————————————————————————
前沿综述
本文核心围绕R 语言 piecewiseSEM 结构方程模型展开,该模型作为生态环境领域主流的统计工具,通过将复杂系统拆分为多个组分模型拟合,突破了传统结构方程模型(SEM)在处理复杂数据结构时的局限,具有强大的灵活性和适用性。
模型特点与优势:
piecewiseSEM 的核心优势在于可与混合效应模型无缝对接,能有效处理生态研究中常见的复杂数据类型,包括非正态分布变量(如二项分布的物种存在 / 缺失数据、泊松分布的个体计数数据)、嵌套 / 多水平数据(如样地 - 区域嵌套的生态调查数据)、时空自相关数据(如长期监测的植被生长数据)等。其通过 “组分模型独立拟合 + 整体路径整合” 的思路,避免了传统 SEM 对数据分布和样本量的严苛要求,同时支持路径系数的分步检验与优化,更贴合生态系统多因子交互的复杂性。
最新技术应用:
近年来,piecewiseSEM 在生态领域的应用不断深化:①结合空间自相关分析(如 Moran’s I 修正),优化景观因子对物种分布的影响建模;②整合系统发育数据(如物种进化关系矩阵),解析生物多样性与环境因子的进化关联;③通过复合变量(composite)技术,将多维度生态指标(如土壤理化性质、植被功能性状)整合为潜变量,简化复杂路径网络;④支持分组分析(multigroup),对比不同干扰类型(如自然保护区 vs 人工林区)下生态过程的差异机制。这些技术通过 R 语言实现自动化建模与可视化,显著提升了生态系统因果关系解析的效率与精度。
交叉行业应用:
在生态领域,用于解析气候变化、土地利用对生态系统服务(如碳汇、水源涵养)的驱动路径;在农业领域,量化施肥、种植模式对作物产量与土壤健康的交互影响;在环境治理中,识别污染物扩散与景观格局的关联机制。2024 年《Ecological Monographs》最新研究显示,piecewiseSEM 在全球变化背景下的多尺度生态响应研究中,较传统 SEM 的解释力提升 15%-20%,已成为生态因果推断的核心工具。
一、R/Rstudio简介及入门
(1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等
(2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等
(3)R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)
(4)R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储
二、结构方程模型(SEM)介绍
(1)SEM的定义、生态学领域应用及历史回顾
(2)SEM的基本结构
(3)SEM的估计方法
(4)SEM的路径规则
(5)SEM路径参数的含义
(6)SEM分析样本量及模型可识别规则
(7)SEM构建基本流程
三、 piecewise包简介及应用案例
(1)结构方程模型在生态学研究中的应用介绍及要点回顾
(2)piecewiseSEM结构方程模型基本原理
(3)piecewiseSEM结构方程模型构建应用案例
四、piecewiseSEM非正态分布变量分析
(1)非正态分布数据VS非正态分布变量
(2)piecewiseSEM处理非正态变量的注意事项
(3)piecewiseSEM处理二项分布和泊松分布案例
五、piecewiseSEM嵌套/分层/多水平数据分析
(1)嵌套/多水平/分层数据概述
(2)piecewiseSEM与混合/多水平/分层模型的结合
(3)均衡和不均衡结构嵌套/多水平/分层数据结构方程实例
六、piecewiseSEM处理重复测量和时间数据
(1)时间重复测量数据特点简介
(2)时间/重复测量数据的自相关问题
(3)piecewiseSEM处理时间自相关问题实例
七、piecewiseSEM处理空间自相关数据
(1)数据空间自相关概述
(2)piecewiseSEM处理空间自相关数据基本原理
(3)piecewiseSEM处理空间自相关问题实例
八、piecewiseSEM处理系统发育数据
(1)系统发育相关问题介绍
(2)系统发育相关数据纳入结构方程模型实现途径
(3)piecewiseSEM系统发育相关数据纳入结构方程实例
九、piecewiseSEM复合变量(composite)分析
(1)复合变量的定义及在生态学领域应用情景分析
(2)piecewiseSEM复合变量分析实现途径
(3)piecewiseSEM复合变量分析案例
十、piecewiseSEM处理分类变量
(1)分类变量介绍
(2)分类变量路径系数含义及表达方式
(3)外生变量为分类变量分析案例
十一、piecewiseSEM非线性关系数据分析
(1)非线性数据简介
(2)piecewiseSEM处理非线性数据途径及案例
(3)piecewiseSEM处理变量间交互作用关系方式及案例
十二、piecewiseSEM数据分组(multigroup)分析
(1)分组数据vs分类变量vs交互作用
(2)数据分组分析实现途径
(3)二分组及多分组模型分析及结果表达
(4)分组分析案例
了解更多
V头像