基于R、Python的Copula变量相关性分析

发布于:2025-07-20 ⋅ 阅读:(14) ⋅ 点赞:(0)

Copula不但可以提供不同取值范围内变量间相关的结构和函数细节,而且可以应用于相关时间序列及回归分析的研究中,大大拓展了回归及时间序列分析的适用范围。

一:R及Python语言及相关性研究初步

1.R语言及Python的基本操作

2.各类相关系数的区别及实现

3.R语言及Python中Copula相关包和函数

二:二元Copula理论与实践(一)

1.Sklar定理与不变性原理

2.椭圆分布与椭圆Copula

3.阿基米德Copula

三:二元Copula理论与实践(二)【R语言为主】

1.极值相依性与极值Copula

2.Copula函数的变换:旋转与混合Copula

3.边缘分布估计:参数与非参数方法

4.Copula函数的估计

5.Python的相关实现

四:Copula函数的统计检验与选择【R语言为主】

1.相依性与对称性检验

2.拟合优度与其它统计检验

3.极值相关性检验

4.模型选择

5.Python相关实现

五:高维数据与Vine Copula【R语言】

1.条件分布函数

2.C-Vine Copula

3.D-Vine Copula

六:正则Vine Copula(一)【R语言】

1.图论基础与正则Vine树

2.正则Vine Copula族及其简化

3.正则Vine Copula的模拟

七:正则Vine Copula(二)【R语言】

1.Vine Copula的渐近理论与极大似然法估计

2.正则Vine Copula模型的选择

3.模型检验比较

八:时间序列中的Copula【R语言】

1.时间序列理论初步(稳定性检验、相依性检验)

2.Markov假设

3.时间序列的Copula

九:Copula回归【R语言】

1.回归的基本理论

2.广义线性回归

3.高斯Copula回归

4.一般Copula回归

十:Copula下的结构方程模型【R语言】

1.结构方程模型的基本原理

2.R语言的结构方程模型

3.Copula结构方程模型的构建

4.模型检验

十一:Copula贝叶斯网络【Python语言】

1.什么是贝叶斯网络

2.贝叶斯网络与Copula模型的相似性

3.Copula贝叶斯网络的原理

4.Copula贝叶斯网络的Python实现

十二:Copula的贝叶斯估计【Python语言】

1.贝叶斯统计学基本原理

2.Python中的贝叶斯统计初步

3.Copula贝叶斯先验及其估计

4.Python中实现Copula的贝叶斯估计

十三:AI辅助的Copula统计学

1.大语言模型是什么?以及它的强项与弱项

2.主要AI的比较与推荐

3.提示词的要点

4.利用AI辅助总结理论及输入要点

5.Python与R语言的人工智能注释

6.AI如何辅助Copula统计编程

7.利用AI辅助理解结果


网站公告

今日签到

点亮在社区的每一天
去签到