bash方式启动模型训练

发布于:2025-07-21 ⋅ 阅读:(16) ⋅ 点赞:(0)

export \

PATHPYTHONPATH=/workspace/mmlab/mmdetection/:/workspace/mmlab/mmsegmentation/:/workspace/mmlab/mmdeploy/:${env:PYTHONPATH} \

CUDA_VISIBLE_DEVICES=0 \

DATA_ROOT_1=/mnt/data/…/ \

DATA_ROOT_2=/mnt/data/…/ \

DATA_ROOT_MASK=/…/ \

PATH_COMMON_PACKAGES_SO=…so

 

 

nohup \

python main.py \

mtn.py \

--train \

--work_dir work_dirs/0720/ \

> log_0720_stdout.txt \

2> log_0720_stderr.txt \

&


AI解读:

这段指令的目标是设置环境变量并运行一个 Python 脚本来启动训练任务,同时将日志输出分别记录到文件。具体解读如下:

1. 环境变量设置:

  • export PATH PYTHONPATH:

    • 将 /workspace/mmlab/mmdetection/、/workspace/mmlab/mmsegmentation/ 和 /workspace/mmlab/mmdeploy/ 添加到 PYTHONPATH 环境变量,并保留已有值 ${env:PYTHONPATH}。

  • CUDA_VISIBLE_DEVICES=0:

    • 限制任务仅使用第 0 号 GPU。

  • DATA_ROOT_1:

    • 指定数据路径为 /mnt/data/…。

  • DATA_ROOT_2:

    • 设置另一个低分辨率数据路径。

  • DATA_ROOT_MASK:

    • 车辆遮罩数据路径设置为 /mnt/data/…/。

  • PATH_COMMON_PACKAGES_SO:

    • 指定动态库 .so 文件的位置。

2. 运行训练脚本:

  • nohup:

    • 确保任务在后台运行,即使关闭终端也不会中断。

  • python main.py mtn.py:

    • 启动 Python 脚本,并加载配置文件 mtn.py。

  • --train:

    • 指定运行脚本的训练模式。

  • --work_dir work_dirs/0720/:

    • 定义训练的工作目录为 work_dirs/0720/。

3. 日志记录:

  • > log_0720_stdout.txt:

    • 将标准输出内容记录到 log_0720_stdout.txt 文件。

  • 2> log_0720_stderr.txt:

    • 将标准错误输出重定向到 log_0720_stderr.txt 文件。

4. 后台运行:

  • &:

    • 命令将以后台方式运行,释放终端继续其他操作。

这段指令设计得很好,日志分别记录标准输出和错误,路径清晰!🌟 希望你的训练任务顺利完成! 💧✨


网站公告

今日签到

点亮在社区的每一天
去签到