机器学习sklearn:决策树的参数、属性、接口

发布于:2025-07-29 ⋅ 阅读:(16) ⋅ 点赞:(0)

决策树有八个参数:Criterion,两个随机性相关的参数(random_state,splitter),五个剪枝参数(max_depth, min_samples_split,min_samples_leaf,max_feature,min_impurity_decrease)
一个属性:feature_importances_
四个接口:fit,score,apply,predict

样例:

import numpy as np
import pandas as pd
from PIL.ImageColor import colormap
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_wine
from sklearn import tree

wine = load_wine()

Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data, wine.target, test_size=0.3)


clf = tree.DecisionTreeClassifier(criterion='entropy'
                                  , random_state=30
                                  , splitter='random'
                                  , min_samples_split=10
                                  , min_samples_leaf=10
                                  , max_depth=10)

clf = clf.fit(Xtrain, Ytrain)
clf.feature_importances_
clf.apply(Xtest)
clf.predict(Xtest)

一、参数

1、criterion

        参数默认gini,还有entropy,想要高拟合就用entropy

2、random_state       

        设置数字就是固定随机选择的种子,每次运行都一样

3、splitter

        默认是“best”,高拟合

        担心拟合高了或特征太多就用“random”

4、max_depth

        树生长的最大深度,通常是限制拟合过高的情况

5、min_samples_split,min_samples_leaf

        要到min_samples_split个样本才会考虑继续分裂,分裂后的子节点不能少于min_samples_leaf

6、max_features

        特征个数

二、属性

1、feature_importances_

        显示每个特征的重要性

        

三、接口

1、fit

        训练

2、score

        正确率

3、predict

        预测结果是哪一组

4、apply

        叶子节点的索引


网站公告

今日签到

点亮在社区的每一天
去签到