B树的定义
一颗M阶B树T,满足以下条件
- 每个结点至多拥有M课子树
- 根结点至少拥有两颗子树
- 除了根结点以外,其余每个分支结点至少拥有M/2课子树
- 所有的叶结点都在同一层上
- 有k棵子树的分支结点则存在k-1个关键字,关键字按照递增顺序进行排序
- 关键字数量满足 ceil( M/2 ) - 1 <= n <= M-1
B树与B+树的区别
在实际磁盘存储中往往选用的都是b+树
b+树相较于b树的优点
- 关键字不保存数据,只用来索引,所有数据都保存在叶子结点(b树是每个关键字都保存数据)
- b+树的叶子结点是带有指针的,且叶结点本身按关键字从小到大顺序连接(适用于范围查询)
- b+树的中间结点不保存数据,所以磁盘页能容纳更多结点元素,更“矮胖”
C++ B+树算法
构建B+树的基本结构
B+树是一种多路平衡搜索树,常用于数据库和文件系统索引。以下是一个简单的B+树节点结构定义:
template <typename Key, typename Value>
class BPlusNode {
public:
bool is_leaf;
std::vector<Key> keys;
std::vector<Value> values; // Only for leaf nodes
std::vector<BPlusNode*> children; // Only for non-leaf nodes
BPlusNode* next; // Pointer to next leaf node (for range queries)
};
插入操作的实现
插入操作需要处理节点分裂和键的重新分配。以下是插入逻辑的核心代码片段:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::insert(const Key& key, const Value& value) {
if (root == nullptr) {
root = new BPlusNode<Key, Value>(true);
root->keys.push_back(key);
root->values.push_back(value);
return;
}
BPlusNode<Key, Value>* leaf = find_leaf(root, key);
leaf->keys.push_back(key);
leaf->values.push_back(value);
std::sort(leaf->keys.begin(), leaf->keys.end());
if (leaf->keys.size() > order) {
split_leaf(leaf);
}
}
删除操作的实现
删除操作需要处理节点合并和键的重新分配。以下是删除逻辑的核心代码片段:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::remove(const Key& key) {
BPlusNode<Key, Value>* leaf = find_leaf(root, key);
auto it = std::find(leaf->keys.begin(), leaf->keys.end(), key);
if (it == leaf->keys.end()) return;
size_t index = it - leaf->keys.begin();
leaf->keys.erase(leaf->keys.begin() + index);
leaf->values.erase(leaf->values.begin() + index);
if (leaf != root && leaf->keys.size() < (order + 1) / 2) {
handle_underflow(leaf);
}
}
范围查询的实现
B+树支持高效的范围查询,以下是实现代码片段:
template <typename Key, typename Value>
std::vector<Value> BPlusTree<Key, Value>::range_query(const Key& start, const Key& end) {
std::vector<Value> result;
BPlusNode<Key, Value>* leaf = find_leaf(root, start);
while (leaf != nullptr) {
for (size_t i = 0; i < leaf->keys.size(); ++i) {
if (leaf->keys[i] >= start && leaf->keys[i] <= end) {
result.push_back(leaf->values[i]);
}
if (leaf->keys[i] > end) return result;
}
leaf = leaf->next;
}
return result;
}
完整B+树类的定义
以下是一个完整的B+树类定义,包含构造函数和析构函数:
template <typename Key, typename Value>
class BPlusTree {
private:
int order;
BPlusNode<Key, Value>* root;
public:
BPlusTree(int order) : order(order), root(nullptr) {}
~BPlusTree() { clear(root); }
void insert(const Key& key, const Value& value);
void remove(const Key& key);
Value search(const Key& key);
std::vector<Value> range_query(const Key& start, const Key& end);
private:
BPlusNode<Key, Value>* find_leaf(BPlusNode<Key, Value>* node, const Key& key);
void split_leaf(BPlusNode<Key, Value>* leaf);
void handle_underflow(BPlusNode<Key, Value>* node);
void clear(BPlusNode<Key, Value>* node);
};
测试B+树的插入和查询
以下是一个简单的测试用例,验证B+树的插入和查询功能:
void test_b_plus_tree() {
BPlusTree<int, std::string> tree(3);
tree.insert(1, "Alice");
tree.insert(2, "Bob");
tree.insert(3, "Charlie");
assert(tree.search(2) == "Bob");
auto results = tree.range_query(1, 3);
assert(results.size() == 3);
}
处理节点分裂的逻辑
当叶子节点的键数量超过阶数时,需要进行分裂:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::split_leaf(BPlusNode<Key, Value>* leaf) {
BPlusNode<Key, Value>* new_leaf = new BPlusNode<Key, Value>(true);
size_t split_pos = leaf->keys.size() / 2;
new_leaf->keys.assign(leaf->keys.begin() + split_pos, leaf->keys.end());
new_leaf->values.assign(leaf->values.begin() + split_pos, leaf->values.end());
leaf->keys.erase(leaf->keys.begin() + split_pos, leaf->keys.end());
leaf->values.erase(leaf->values.begin() + split_pos, leaf->values.end());
new_leaf->next = leaf->next;
leaf->next = new_leaf;
insert_into_parent(leaf, new_leaf->keys[0], new_leaf);
}
处理节点下溢的逻辑
当节点的键数量低于最小值时,需要进行合并或借用:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::handle_underflow(BPlusNode<Key, Value>* node) {
if (node == root) {
if (node->keys.empty() && !node->children.empty()) {
root = node->children[0];
delete node;
}
return;
}
// Borrow or merge with siblings
BPlusNode<Key, Value>* parent = find_parent(root, node);
// Implementation depends on sibling availability and size
}
查找父节点的辅助函数
以下是一个辅助函数,用于查找给定节点的父节点:
template <typename Key, typename Value>
BPlusNode<Key, Value>* BPlusTree<Key, Value>::find_parent(
BPlusNode<Key, Value>* current, BPlusNode<Key, Value>* child) {
if (current == nullptr || current->is_leaf) return nullptr;
for (size_t i = 0; i < current->children.size(); ++i) {
if (current->children[i] == child) {
return current;
}
auto parent = find_parent(current->children[i], child);
if (parent != nullptr) return parent;
}
return nullptr;
}
插入到父节点的逻辑
分裂后需要将新节点的键插入到父节点中:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::insert_into_parent(
BPlusNode<Key, Value>* left, const Key& key, BPlusNode<Key, Value>* right) {
BPlusNode<Key, Value>* parent = find_parent(root, left);
if (parent == nullptr) {
parent = new BPlusNode<Key, Value>(false);
parent->keys.push_back(key);
parent->children.push_back(left);
parent->children.push_back(right);
root = parent;
return;
}
auto it = std::lower_bound(parent->keys.begin(), parent->keys.end(), key);
size_t index = it - parent->keys.begin();
parent->keys.insert(it, key);
parent->children.insert(parent->children.begin() + index + 1, right);
if (parent->keys.size() > order) {
split_internal(parent);
}
}
内部节点分裂的逻辑
内部节点的分裂与叶子节点类似,但需要处理子节点指针:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::split_internal(BPlusNode<Key, Value>* node) {
BPlusNode<Key, Value>* new_node = new BPlusNode<Key, Value>(false);
size_t split_pos = node->keys.size() / 2;
Key middle_key = node->keys[split_pos];
new_node->keys.assign(node->keys.begin() + split_pos + 1, node->keys.end());
new_node->children.assign(node->children.begin() + split_pos + 1, node->children.end());
node->keys.erase(node->keys.begin() + split_pos, node->keys.end());
node->children.erase(node->children.begin() + split_pos + 1, node->children.end());
insert_into_parent(node, middle_key, new_node);
}
清除B+树的逻辑
析构时需要递归释放所有节点的内存:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::clear(BPlusNode<Key, Value>* node) {
if (node == nullptr) return;
if (!node->is_leaf) {
for (auto child : node->children) {
clear(child);
}
}
delete node;
}
搜索操作的实现
根据键查找对应的值:
template <typename Key, typename Value>
Value BPlusTree<Key, Value>::search(const Key& key) {
BPlusNode<Key, Value>* leaf = find_leaf(root, key);
auto it = std::find(leaf->keys.begin(), leaf->keys.end(), key);
if (it == leaf->keys.end()) throw std::runtime_error("Key not found");
return leaf->values[it - leaf->keys.begin()];
}
查找叶子节点的辅助函数
以下是一个辅助函数,用于查找包含给定键的叶子节点:
template <typename Key, typename Value>
BPlusNode<Key, Value>* BPlusTree<Key, Value>::find_leaf(
BPlusNode<Key, Value>* node, const Key& key) {
if (node == nullptr) return nullptr;
if (node->is_leaf) return node;
auto it = std::upper_bound(node->keys.begin(), node->keys.end(), key);
size_t index = it - node->keys.begin();
return find_leaf(node->children[index], key);
}
测试B+树的删除功能
以下是一个测试用例,验证B+树的删除功能:
void test_b_plus_tree_deletion() {
BPlusTree<int, std::string> tree(3);
tree.insert(1, "Alice");
tree.insert(2, "Bob");
tree.insert(3, "Charlie");
tree.remove(2);
try {
tree.search(2);
assert(false); // Should throw
} catch (const std::runtime_error& e) {
assert(std::string(e.what()) == "Key not found");
}
}
处理叶子节点合并的逻辑
当叶子节点的键数量不足时,需要与兄弟节点合并:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::merge_leaves(
BPlusNode<Key, Value>* left, BPlusNode<Key, Value>* right) {
left->keys.insert(left->keys.end(), right->keys.begin(), right->keys.end());
left->values.insert(left->values.end(), right->values.begin(), right->values.end());
left->next = right->next;
remove_from_parent(right);
delete right;
}
从父节点中删除键的逻辑
合并后需要从父节点中删除对应的键:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::remove_from_parent(BPlusNode<Key, Value>* child) {
BPlusNode<Key, Value>* parent = find_parent(root, child);
if (parent == nullptr) return;
auto it = std::find(parent->children.begin(), parent->children.end(), child);
if (it == parent->children.end()) return;
size_t index = it - parent->children.begin();
if (index > 0) {
parent->keys.erase(parent->keys.begin() + index - 1);
}
parent->children.erase(it);
if (parent != root && parent->keys.size() < (order + 1) / 2 - 1) {
handle_underflow(parent);
}
}
测试B+树的合并功能
以下是一个测试用例,验证B+树的合并功能:
void test_b_plus_tree_merge() {
BPlusTree<int, std::string> tree(3);
for (int i = 1; i <= 4; ++i) {
tree.insert(i, "Value" + std::to_string(i));
}
tree.remove(1);
tree.remove(2);
assert(tree.search(3) == "Value3");
assert(tree.search(4) == "Value4");
}
B+树的持久化存储
将B+树保存到文件中以便后续加载:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::serialize(const std::string& filename) {
std::ofstream out(filename, std::ios::binary);
serialize_node(out, root);
out.close();
}
序列化节点的逻辑
递归序列化节点及其子节点:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::serialize_node(std::ofstream& out, BPlusNode<Key, Value>* node) {
if (node == nullptr) return;
out.write(reinterpret_cast<char*>(&node->is_leaf), sizeof(bool));
size_t size = node->keys.size();
out.write(reinterpret_cast<char*>(&size), sizeof(size_t));
for (const auto& key : node->keys) {
out.write(reinterpret_cast<const char*>(&key), sizeof(Key));
}
if (node->is_leaf) {
for (const auto& value : node->values) {
size_t val_size = value.size();
out.write(reinterpret_cast<char*>(&val_size), sizeof(size_t));
out.write(value.c_str(), val_size);
}
} else {
for (auto child : node->children) {
serialize_node(out, child);
}
}
}
从文件加载B+树
从文件中加载B+树:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::deserialize(const std::string& filename) {
std::ifstream in(filename, std::ios::binary);
if (!in) return;
clear(root);
root = deserialize_node(in);
in.close();
}
反序列化节点的逻辑
递归加载节点及其子节点:
template <typename Key, typename Value>
BPlusNode<Key, Value>* BPlusTree<Key, Value>::deserialize_node(std::ifstream& in) {
if (in.eof()) return nullptr;
bool is_leaf;
in.read(reinterpret_cast<char*>(&is_leaf), sizeof(bool));
BPlusNode<Key, Value>* node = new BPlusNode<Key, Value>(is_leaf);
size_t size;
in.read(reinterpret_cast<char*>(&size), sizeof(size_t));
node->keys.resize(size);
for (size_t i = 0; i < size; ++i) {
in.read(reinterpret_cast<char*>(&node->keys[i]), sizeof(Key));
}
if (is_leaf) {
node->values.resize(size);
for (size_t i = 0; i < size; ++i) {
size_t val_size;
in.read(reinterpret_cast<char*>(&val_size), sizeof(size_t));
char* buffer = new char[val_size + 1];
in.read(buffer, val_size);
buffer[val_size] = '\0';
node->values[i] = std::string(buffer);
delete[] buffe