二轮平衡小车(3):SystemInit函数
1、SystemInit函数
主控是STM32F103C8,工程中宏定义STM32F10X_MD
/**
* @brief Setup the microcontroller system
* Initialize the Embedded Flash Interface, the PLL and update the
* SystemCoreClock variable.
* @note This function should be used only after reset.
* @param None
* @retval None
*/
void SystemInit (void)
{
/* Reset the RCC clock configuration to the default reset state(for debug purpose) */
/* Set HSION bit */
RCC->CR |= (uint32_t)0x00000001;
/* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CL
RCC->CFGR &= (uint32_t)0xF8FF0000;
#else
RCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F10X_CL */
/* Reset HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xFEF6FFFF;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
RCC->CFGR &= (uint32_t)0xFF80FFFF;
#ifdef STM32F10X_CL
/* Reset PLL2ON and PLL3ON bits */
RCC->CR &= (uint32_t)0xEBFFFFFF;
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x00FF0000;
/* Reset CFGR2 register */
RCC->CFGR2 = 0x00000000;
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x009F0000;
/* Reset CFGR2 register */
RCC->CFGR2 = 0x00000000;
#else
/* Disable all interrupts and clear pending bits */
RCC->CIR = 0x009F0000;
#endif /* STM32F10X_CL */
#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)
#ifdef DATA_IN_ExtSRAM
SystemInit_ExtMemCtl();
#endif /* DATA_IN_ExtSRAM */
#endif
/* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers */
/* Configure the Flash Latency cycles and enable prefetch buffer */
SetSysClock();
#ifdef VECT_TAB_SRAM
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#else
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif
}
2、使用软件调试
首先,打开Keil魔术棒工具将Xtal改为8Mhz(这边用软件调试,也可以用Stlink硬件调试,stlink会有点点卡),
将对应的DLL文件和参数修改,参数改为自己的芯片型号!!!
将对应的DLL文件和参数修改,参数改为自己的芯片型号!!!
将对应的DLL文件和参数修改,参数改为自己的芯片型号!!!
先编译,不然没法打断点,进入调试,复位,在此处打断点
点击菜单栏,view->system viewer->rcc,用于查看RCC寄存器的值
点开寄存器中的+号,可以查看具体的值,开始单步调试
/* Set HSION bit */
RCC->CR |= (uint32_t)0x00000001;
根据注释,这一句语句打开HSI时钟,对应的位(其实还是复位值),但也确实置为了1。查看手册对应寄存器对应位的描述,打开了内置的8MhzRC振荡器。
接下来,执行这句话,应为使用的不是互联型产品
/* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CL
RCC->CFGR &= (uint32_t)0xF8FF0000;
其实也没改变复位值
这句话对应各个位的意义是:
高四位保留,不管
MCO脚无时钟源(1)
OTGFSPRE这个位只有互联型产品有,其余类型产品保留,不管
锁相环倍频因子,保留(2)
PLLXTPRE这个位比较有意思,它是PREDIV1(3)的最低有效位,对应还有一个RCC->CFGR2的寄存器中有一个相同的位,所以修改CFGR2也会修改这一位,而且如果CFGR2中[3:1]没有被置位,那么这一位进一步控制,PREDIVE(3)是否对输入时钟进行二分频,1的时候分频。
从RCC中可以看到,STM32F103C8并没有CFGR2这个寄存器,那么这一位就控制是否对输入时钟进行分频,这个时候是不分频。
PLLSRC(4) 锁相环的来源,HSI内部RC振荡器二分频作为锁相环输入时钟
ADCPRE(5)ADC时钟的预分频器,PCLK2(6)二分频
PPRE2 (7) APB2高速总线的预分频器,不分频
PPRE1(8)APB1低速总线的预分频器,不分频
HPRE(9)AHB总线预分频器,不分频
SWS(10)系统时钟选择位,选择内部RC振荡器为系统时钟
具体,如下图所示
接下来的几句话,其实都没改变复位值,CFGR寄存器对应位的分析还是和上面一样,CR寄存器的分析,和注释一样,关闭对应的时钟源,只保留内部的RC振荡器
/* Reset HSEON, CSSON and PLLON bits */
RCC->CR &= (uint32_t)0xFEF6FFFF;
/* Reset HSEBYP bit */
RCC->CR &= (uint32_t)0xFFFBFFFF;
/* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
RCC->CFGR &= (uint32_t)0xFF80FFFF;
接下来执行这句话,Clock interrupt register这个寄存器CIR用来控制中断,所有位都是0,所有中断都被清除。
RCC->CIR = 0x009F0000;
接下来才是重中之重
3、SetSysClock()
继续点击单步调试
我们发现,它直接跳到这个函数,根据宏定义只有定义了SYSCLK_FREQ_72MHZ才会调用这个函数,打开搜索ctrl+f
点击Find All
一共有这么多处使用了这个宏定义,去看看
第一处有这样的语句,我们定义的是MD不在第一个ifdefine语句中,那么就调用#define SYSCLK_FREQ_72MHz 72000000这句话
#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* #define SYSCLK_FREQ_HSE HSE_VALUE */
#define SYSCLK_FREQ_24MHz 24000000
#else
/* #define SYSCLK_FREQ_HSE HSE_VALUE */
/* #define SYSCLK_FREQ_24MHz 24000000 */
/* #define SYSCLK_FREQ_36MHz 36000000 */
/* #define SYSCLK_FREQ_48MHz 48000000 */
/* #define SYSCLK_FREQ_56MHz 56000000 */
#define SYSCLK_FREQ_72MHz 72000000
#endif
第二处,根据上面的定义,执行这句话#elif defined SYSCLK_FREQ_72MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_72MHz; 这里面的SystemCoreClock是一个全局变量,用来存储当前系统的内核时钟频率。
#ifdef SYSCLK_FREQ_HSE
uint32_t SystemCoreClock = SYSCLK_FREQ_HSE; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_24MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_24MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_36MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_36MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_48MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_48MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_56MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_56MHz; /*!< System Clock Frequency (Core Clock) */
#elif defined SYSCLK_FREQ_72MHz
uint32_t SystemCoreClock = SYSCLK_FREQ_72MHz; /*!< System Clock Frequency (Core Clock) */
#else /*!< HSI Selected as System Clock source */
uint32_t SystemCoreClock = HSI_VALUE; /*!< System Clock Frequency (Core Clock) */
#endif
第三处,就调用了static void SetSysClockTo72(void);这个函数。
#ifdef SYSCLK_FREQ_HSE
static void SetSysClockToHSE(void);
#elif defined SYSCLK_FREQ_24MHz
static void SetSysClockTo24(void);
#elif defined SYSCLK_FREQ_36MHz
static void SetSysClockTo36(void);
#elif defined SYSCLK_FREQ_48MHz
static void SetSysClockTo48(void);
#elif defined SYSCLK_FREQ_56MHz
static void SetSysClockTo56(void);
#elif defined SYSCLK_FREQ_72MHz
static void SetSysClockTo72(void);
#endif
第四处,就是一开始我们跳转的地方
static void SetSysClock(void)
{
#ifdef SYSCLK_FREQ_HSE
SetSysClockToHSE();
#elif defined SYSCLK_FREQ_24MHz
SetSysClockTo24();
#elif defined SYSCLK_FREQ_36MHz
SetSysClockTo36();
#elif defined SYSCLK_FREQ_48MHz
SetSysClockTo48();
#elif defined SYSCLK_FREQ_56MHz
SetSysClockTo56();
#elif defined SYSCLK_FREQ_72MHz
SetSysClockTo72();
#endif
/* If none of the define above is enabled, the HSI is used as System clock
source (default after reset) */
}
最后一处,通过配置RCC寄存器使得系统时钟为72MHZ
#elif defined SYSCLK_FREQ_72MHz
/**
* @brief Sets System clock frequency to 72MHz and configure HCLK, PCLK2
* and PCLK1 prescalers.
* @note This function should be used only after reset.
* @param None
* @retval None
*/
static void SetSysClockTo72(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;
/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}
if (HSEStatus == (uint32_t)0x01)
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;
4、static void SetSysClockTo72(void)
static void SetSysClockTo72(void)
{
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;
/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
else
{
HSEStatus = (uint32_t)0x00;
}
if (HSEStatus == (uint32_t)0x01)
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;
定义的这两个变量,我们右击将它们添加到watch1中观察它们的值
__IO uint32_t StartUpCounter = 0, HSEStatus = 0;
此时,我们先记录一下CR,CFGR,FLASH->ACR寄存器的值
查看注释,我们可以大概知道这个函数用来配置SYSCLK、HCLK、PCLK2和PCLK1
/* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
这句话用来使能外部晶振,RCC_CR_HSEON的值为,第16位置为1,使能外部晶振。
#define RCC_CR_HSEON ((uint32_t)0x00010000)
接着进入一个dowhile循环,根据注释是用来判断,外部晶振的状态。RCC_CR_HSERDY的定义如下。
/* Wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
#define RCC_CR_HSERDY ((uint32_t)0x00020000)
通过判断位的值和超时时间来判断外部晶振是否准备好。
如果准备好了,那么HSEStatus变量的值为1
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
HSEStatus = (uint32_t)0x01;
}
接下来执行这段语句,
if (HSEStatus == (uint32_t)0x01)
{
/* Enable Prefetch Buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;
首先使能Flash的预缓冲区,提高系统的整体性能。
这两句话,FLASH_ACR_LATENCY=0x03,取反就是1111 1100,
/* Flash 2 wait state */
FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;
#define FLASH_ACR_LATENCY ((uint8_t)0x03) /*!< LATENCY[2:0] bits (Latency) */
#define FLASH_ACR_LATENCY_0 ((uint8_t)0x00) /*!< Bit 0 */
#define FLASH_ACR_LATENCY_1 ((uint8_t)0x01) /*!< Bit 0 */
#define FLASH_ACR_LATENCY_2 ((uint8_t)0x02)
其实主要就是操作,这三位,表示系统时钟与闪存访问时间的比值,这里设置为2,之前系统时钟为72Mhz这里配置比例为2,表示FLASH需要两个周期来响应一个访问请求。
最后
/* HCLK = SYSCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
/* PCLK1 = HCLK */
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;
#define RCC_CFGR_HPRE_DIV1 ((uint32_t)0x00000000)
#define RCC_CFGR_PPRE2_DIV1 ((uint32_t)0x00000000)
#define RCC_CFGR_PPRE1_DIV2 ((uint32_t)0x00000400)
表面上,这三句话只有最后一句话起作用,其实第一句话配置了AHB总线的分频器为1,第二句话配置了APB2的分频器为1,最后一句话配置APB1总线时钟配置为HCLK的二分频,主要是PPRE1的三个位。
接着,这两句话根据注释应该是吧锁相环时钟配置为外部晶振的9倍频。
/* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
#define RCC_CFGR_PLLSRC ((uint32_t)0x00010000)
#define RCC_CFGR_PLLXTPRE ((uint32_t)0x00020000)
#define RCC_CFGR_PLLMULL ((uint32_t)0x003C0000)
之后使能锁相环,
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;
#define RCC_CR_PLLON ((uint32_t)0x01000000)
判断锁相环准备好了没
/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
准备好了就选择锁相环作为系统时钟源
/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
#define RCC_CFGR_SW ((uint32_t)0x00000003)
#define RCC_CFGR_SW_PLL ((uint32_t)0x00000002)
最后等待使用锁相环作为系统时钟源。
/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
{
}
看一下时钟树
最后的最后,将中断向量表映射到FLASH中。
#else
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif