DAY 36 复习日

发布于:2025-08-06 ⋅ 阅读:(17) ⋅ 点赞:(0)
  • 作业:对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。

1.初始化

# 导包
import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import torch
import torch.nn as nn
import torch.optim as optim
import torchsummary
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import time
import matplotlib.pyplot as plt
from tqdm import tqdm  # 导入tqdm库用于进度条显示
import warnings
warnings.filterwarnings("ignore")
 
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
 
 
# 设置GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

2.读取数据,预处理

data = pd.read_csv('data.csv')    #读取数据
# 先筛选字符串变量 
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2,
    'Have Mortgage': 3,
    'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
 
# Years in current job 标签编码
years_in_job_mapping = {
    '< 1 year': 1,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
 
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
    if i not in data2.columns:
       list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
    data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
 
# Term 0 - 1 映射
term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表
print(len(continuous_features),continuous_features)
 # 连续特征用中位数补全
for feature in continuous_features:     
    mode_value = data[feature].mode()[0]            #获取该列的众数。
    data[feature].fillna(mode_value, inplace=True)          #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
 
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签


# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


# 归一化数据
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

3.数据转化传入GPU

import torch
import pandas as pd
 
# 假设 X_train 是 DataFrame(如果已经是 ndarray,可跳过前两步)
# X_train = X_train.values  # 若已转 ndarray,这行多余,删掉
# X_test = X_test.values    # 同理删掉
 
# 转换并移动到设备
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train.values).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test.values).to(device)

4.初始化模型,查看结构

X_train.shape  #输入改成31,输出是二分类改为2

class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(31, 10)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 2)  # 隐藏层到输出层
 
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out
 
# 实例化模型并移至GPU
model = MLP().to(device)


from torchsummary import summary
# 打印模型摘要,可以放置在模型定义后面
summary(model, input_size=(31,))


# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()
 
# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)

5.开始训练,可视化结果

# 训练模型
num_epochs = 20005  # 训练的轮数不是1000的倍数,因为这样才能凸显下面 确保进度条达到100%这一段代码的作用。大家可以按照我的轮次把下面 确保进度条达到100%代码注释一下看看结果
 
# 用于存储每100个epoch的损失值和对应的epoch数
losses = []
epochs = []
 
start_time = time.time()  # 记录开始时间
 
# 创建tqdm进度条
with tqdm(total=num_epochs, desc="训练进度", unit="epoch") as pbar:
    # 训练模型
    for epoch in range(0,num_epochs):
        # 前向传播
        outputs = model(X_train)  # 隐式调用forward函数
        loss = criterion(outputs, y_train)
 
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
 
        # 记录损失值并更新进度条
        if (epoch + 1) % 200 == 0:
            losses.append(loss.item())
            epochs.append(epoch + 1)
            # 更新进度条的描述信息
            pbar.set_postfix({'Loss': f'{loss.item():.4f}'})
 
        # 每1000个epoch更新一次进度条
        if (epoch + 1) % 1000 == 0:
            pbar.update(1000)  # 更新进度条
 
    # 确保进度条达到100%
    # if pbar.n < num_epochs:
    #     pbar.update(num_epochs - pbar.n)  # 计算剩余的进度并更新
 
time_all = time.time() - start_time  # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')


# 可视化损失曲线
plt.figure(figsize=(10, 6))
plt.plot(epochs, losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.grid(True)
plt.show()

6.测试输出推理

# 在测试集上评估模型,此时model内部已经是训练好的参数了
# 评估模型
model.eval() # 设置模型为评估模式
with torch.no_grad(): # torch.no_grad()的作用是禁用梯度计算,可以提高模型推理速度
    outputs = model(X_test)  # 对测试数据进行前向传播,获得预测结果
    _, predicted = torch.max(outputs, 1) # torch.max(outputs, 1)返回每行的最大值和对应的索引
    #这个函数返回2个值,分别是最大值和对应索引,参数1是在第1维度(行)上找最大值,_ 是Python的约定,表示忽略这个返回值,所以这个写法是找到每一行最大值的下标
    # 此时outputs是一个tensor,p每一行是一个样本,每一行有3个值,分别是属于3个类别的概率,取最大值的下标就是预测的类别
 
 
    # predicted == y_test判断预测值和真实值是否相等,返回一个tensor,1表示相等,0表示不等,然后求和,再除以y_test.size(0)得到准确率
    # 因为这个时候数据是tensor,所以需要用item()方法将tensor转化为Python的标量
    # 之所以不用sklearn的accuracy_score函数,是因为这个函数是在CPU上运行的,需要将数据转移到CPU上,这样会慢一些
    # size(0)获取第0维的长度,即样本数量
    correct = (predicted == y_test).sum()
    # print(correct,type(correct))
    correct = (predicted == y_test).sum().item() # 计算预测正确的样本数
    # print(correct,type(correct))
    accuracy = correct / y_test.size(0)
    print(f'测试集准确率: {accuracy * 100:.2f}%')
    # print(predicted,type(predicted))
    # print(y_test,type(y_test))

@浙大疏锦行


网站公告

今日签到

点亮在社区的每一天
去签到