垃圾分类检测数据集-15,000 张图片 智能垃圾分类 回收站与环保设施自动化 公共区域清洁监测 环保机器人 水域与自然环境垃圾监测

发布于:2025-08-14 ⋅ 阅读:(18) ⋅ 点赞:(0)

在这里插入图片描述

📦 已发布目标检测数据集合集(持续更新)

数据集名称 图像数量 应用方向 博客链接
🔌 电网巡检检测数据集 1600 张 电力设备目标检测 点击查看
🔥 火焰 / 烟雾 / 人检测数据集 10000张 安防监控,多目标检测 点击查看
🚗 高质量车牌识别数据集 10,000 张 交通监控 / 车牌识别 点击查看
🌿 农田杂草航拍检测数据集 1,200 张 农业智能巡检 点击查看
🐑 航拍绵羊检测数据集 1,700 张 畜牧监控 / 航拍检测 点击查看
🌡️ 热成像人体检测数据集 15,000 张 热成像下的行人检测 点击查看
🦺 安全背心检测数据集 3,897 张 工地安全 / PPE识别 点击查看
🚀 火箭检测数据集介绍 12,000 张 智慧医疗 / 养老护理 点击查看
⚡ 绝缘子故障检测数据集 2,100张 无人机巡检/智能运维 点击查看
🚦交通标志检测数据集 1866张 智能驾驶系统/地图数据更新 点击查看
🚧 道路交通标志检测数据集 2,000张 智能地图与导航/交通监控与执法 点击查看
😷 口罩检测数据集 1,600张 疫情防控管理/智能门禁系统 点击查看
🦌 野生动物检测数据集 5,138张 野生动物保护监测/智能狩猎相机系统 点击查看
🍎 水果识别数据集 2,611张 图片智能零售/智慧农业 点击查看
🚁 无人机目标检测数据集 14,751张 无人机检测/航拍图像 点击查看
🚬 吸烟行为检测数据集 2,108张 公共场所禁烟监控/健康行为研究 点击查看
🛣️ 道路坑洞检测数据集 8,300张 智能道路巡检系统/车载安全监测设备 点击查看
🛠️ 井盖识别数据集 2,700 张 道路巡检 智能城市 点击查看
🧯 消防器材检测数据集 9,600 张 智慧安防系统 自动审核系统 点击查看
📱 手机通话检测数据集 3,100张 智能监控系统 驾驶安全监控 点击查看
🚜 建筑工地车辆检测数据集 28,000 张 施工现场安全监控 智能工地管理系统 点击查看
🏊 游泳人员检测数据集 4,500 张 游泳池安全监控 海滩救生系统 点击查看
🌿 植物病害检测数据集 6,200 张 智能农业监测系统 家庭园艺助手 点击查看
🐦 鸟类计算机视觉数据集 6,200 张 鸟类保护监测 生态环境评估 点击查看
🚁 无人机计算机视觉数据集 7,000 张 空域安全监管 无人机反制系统 点击查看
🛡️ Aerial_Tank_Images 坦克目标检测数据集 2,200 张 军事目标识别与侦查 卫星遥感目标识别 点击查看
♻️ 塑料可回收物检测数据集 10,000 张 智能垃圾分类系统 环保回收自动化 点击查看
🏢 建筑物实例分割数据集 9,700 张 城市规划与发展 智慧城市管理 点击查看
😊 人脸情绪检测数据集 9,400 张 智能客服系统 在线教育平台 点击查看
🔍 红外人员车辆检测数据集 53,000 张 智能安防监控系统 边境安全防控 点击查看
🚗 停车空间检测数据集 3,100 张 实时车位导航系统 智能停车收费管理 点击查看

📌 每篇文章附带模型指标、训练思路与推理部署建议,欢迎点赞收藏支持~

♻ 垃圾分类检测数据集介绍

📌 数据集概览

本项目是WasteAI团队构建的多类别垃圾目标检测数据集,共包含约 15,000 张图像,主要用于训练深度学习模型在不同场景中精准识别和分类各类垃圾(如纸板、玻璃、金属、纸张、塑料等)。

  • 图像数量:15,000 张
  • 类别数:5 类
  • 适用任务:目标检测(Object Detection)
  • 适配模型:YOLOv5、YOLOv8、Faster R-CNN、SSD 等主流框架
  • 性能指标
    • mAP@50:90.3%
    • Precision:89.8%
    • Recall:85.4%

包含类别

类别 英文名称 描述
cardboard Cardboard 纸板、硬纸箱等
glass Glass 各类玻璃瓶、玻璃容器
metal Metal 金属罐、易拉罐等
paper Paper 报纸、宣传单、纸杯等
plastic Plastic 塑料瓶、塑料包装、塑料杯等

数据集覆盖生活中常见的五大垃圾类型,支持智能垃圾分类系统与环保监测的模型训练。

🎯 应用场景

该数据集适用于以下主要场景与研究方向:

  • 智能垃圾分类
    自动识别不同类别垃圾,提升垃圾分类效率与准确率。

  • 回收站与环保设施自动化
    辅助回收系统自动分拣,提高再利用率。

  • 公共区域清洁监测
    城市街道、校园、景区等公共区域垃圾自动识别与清洁调度。

  • 环保机器人
    为自动拾取垃圾的机器人提供视觉识别能力。

  • 水域与自然环境垃圾监测
    识别漂浮物与自然环境中的污染物,支持环保执法与治理。

🖼 数据样本展示

以下展示部分数据集内的样本图片(均带有目标检测框):
在这里插入图片描述
在这里插入图片描述

数据集特点:

  • 多场景:室内、户外、垃圾桶、回收站等多种背景
  • 多角度:俯视、平视、倾斜等多视角拍摄
  • 多光照:自然光、室内灯光、昏暗环境等
  • 多样化目标尺寸:从小型包装到大型纸板箱
  • 复杂背景干扰:重叠、遮挡、多目标混合场景

🔧 使用建议

  1. 数据预处理

    • 图像尺寸统一(推荐640x640或832x832)
    • 光照归一化处理,减少光线差异影响
    • 数据增强:翻转、旋转、颜色抖动等
  2. 模型训练

    • 使用COCO预训练权重进行迁移学习
    • 多尺度训练提升对不同尺寸垃圾的检测能力
    • 针对小目标优化anchor配置
  3. 部署优化

    • 模型轻量化以支持边缘设备
    • 推理速度优化,满足实时检测需求
    • 低功耗部署以延长设备续航

🌟 数据集特色

  • 高精度标注:确保检测框精准匹配目标
  • 覆盖全面:五大垃圾类别全覆盖
  • 场景丰富:多光照、多背景、多目标
  • 性能优异:mAP@50 达 90.3%
  • 应用广泛:可用于城市、乡村、工业等多种环境

📈 商业价值

该数据集在以下领域具有重要商业价值:

  • 智慧城市:为智能环卫与垃圾分类系统提供核心数据
  • 环保科技:支持环保监测与治理
  • 机器人制造:为自主导航清洁与回收机器人提供视觉识别能力
  • 教育与科研:作为机器学习和计算机视觉研究的高质量训练数据

🔗 技术标签

计算机视觉 目标检测 垃圾分类 塑料检测 金属检测 纸张检测 YOLO 智慧城市 智能环保 边缘计算


注意: 本数据集可用于研究、教育与商业用途,使用时需遵守相关法律法规,确保数据使用符合环保与伦理要求。

YOLOv8 训练实战

本教程介绍如何使用 YOLOv8 对目标进行识别与检测。涵盖环境配置、数据准备、训练模型、模型推理和部署等全过程。


📦 1. 环境配置

建议使用 Python 3.8+,并确保支持 CUDA 的 GPU 环境。

# 创建并激活虚拟环境(可选)
python -m venv yolov8_env
source yolov8_env/bin/activate  # Windows 用户使用 yolov8_env\Scripts\activate

安装 YOLOv8 官方库 ultralytics

pip install ultralytics

📁 2. 数据准备

2.1 数据标注格式(YOLO)

每张图像对应一个 .txt 文件,每行代表一个目标,格式如下:

<class_id> <x_center> <y_center> <width> <height>

所有值为相对比例(0~1)。

类别编号从 0 开始。

2.2 文件结构示例

datasets/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

2.3 创建 data.yaml 配置文件

path: ./datasets
train: images/train
val: images/val

nc: 11
names: ['Bent_Insulator', 'Broken_Insulator_Cap', '', ...]

🚀 3. 模型训练

YOLOv8 提供多种模型:yolov8n, yolov8s, yolov8m, yolov8l, yolov8x。可根据设备性能选择。

yolo detect train \
  model=yolov8s.pt \
  data=./data.yaml \
  imgsz=640 \
  epochs=50 \
  batch=16 \
  project=weed_detection \
  name=yolov8s_crop_weed
参数 类型 默认值 说明
model 字符串 - 指定基础模型架构文件或预训练权重文件路径(.pt/.yaml
data 字符串 - 数据集配置文件路径(YAML 格式),包含训练/验证路径和类别定义
imgsz 整数 640 输入图像的尺寸(像素),推荐正方形尺寸(如 640x640)
epochs 整数 100 训练总轮次,50 表示整个数据集会被迭代 50 次
batch 整数 16 每个批次的样本数量,值越大需要越多显存
project 字符串 - 项目根目录名称,所有输出文件(权重/日志等)将保存在此目录下
name 字符串 - 实验名称,用于在项目目录下创建子文件夹存放本次训练结果

关键参数补充说明:

  1. model=yolov8s.pt

    • 使用预训练的 YOLOv8 small 版本(平衡速度与精度)
    • 可用选项:yolov8n.pt(nano)/yolov8m.pt(medium)/yolov8l.pt(large)
  2. data=./data.yaml

    # 典型 data.yaml 结构示例
    path: ../datasets/weeds
    train: images/train
    val: images/val
    names:
      0: Bent_Insulator
      1: Broken_Insulator_Cap
      2: ...
      3: ...
    

📈 4. 模型验证与测试

4.1 验证模型性能

yolo detect val \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  data=./data.yaml
参数 类型 必需 说明
model 字符串 要验证的模型权重路径(通常为训练生成的 best.ptlast.pt
data 字符串 与训练时相同的 YAML 配置文件路径,需包含验证集路径和类别定义

关键参数详解

  1. model=runs/detect/yolov8s_crop_weed/weights/best.pt

    • 使用训练过程中在验证集表现最好的模型权重(best.pt
    • 替代选项:last.pt(最终epoch的权重)
    • 路径结构说明:
      runs/detect/
      └── [训练任务名称]/
          └── weights/
              ├── best.pt   # 验证指标最优的模型
              └── last.pt   # 最后一个epoch的模型
      
  2. data=./data.yaml

    • 必须与训练时使用的配置文件一致
    • 确保验证集路径正确:
      val: images/val  # 验证集图片路径
      names:
        0: crop
        1: weed
      

常用可选参数

参数 示例值 作用
batch 16 验证时的批次大小
imgsz 640 输入图像尺寸(需与训练一致)
conf 0.25 置信度阈值(0-1)
iou 0.7 NMS的IoU阈值
device 0/cpu 选择计算设备
save_json True 保存结果为JSON文件

典型输出指标

Class     Images  Instances      P      R      mAP50  mAP50-95
all        100       752      0.891  0.867    0.904    0.672
crop       100       412      0.912  0.901    0.927    0.701
weed       100       340      0.870  0.833    0.881    0.643

4.2 推理测试图像

yolo detect predict \
  model=runs/detect/yolov8s_crop_weed/weights/best.pt \
  source=./datasets/images/val \
  save=True

🧠 5. 自定义推理脚本(Python)

from ultralytics import YOLO
import cv2

# 加载模型
model = YOLO('runs/detect/yolov8s_crop_weed/weights/best.pt')

# 推理图像
results = model('test.jpg')

# 可视化并保存结果
results[0].show()
results[0].save(filename='result.jpg')

🛠 6. 部署建议

✅ 本地运行:通过 Python 脚本直接推理。

🌐 Web API:可用 Flask/FastAPI 搭建检测接口。

📦 边缘部署:YOLOv8 支持导出为 ONNX,便于在 Jetson、RKNN 等平台上部署。

导出示例:

yolo export model=best.pt format=onnx

📌 总结流程

阶段 内容
✅ 环境配置 安装 ultralytics, PyTorch 等依赖
✅ 数据准备 标注图片、组织数据集结构、配置 YAML
✅ 模型训练 使用命令行开始训练 YOLOv8 模型
✅ 验证评估 检查模型准确率、mAP 等性能指标
✅ 推理测试 运行模型检测实际图像目标
✅ 高级部署 导出模型,部署到 Web 或边缘设备

网站公告

今日签到

点亮在社区的每一天
去签到