13.深度学习——Minst手写数字识别

发布于:2025-08-18 ⋅ 阅读:(17) ⋅ 点赞:(0)

第一部分——起手式

import torch
from torchvision import datasets, transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

use_cuda = torch.cuda.is_available()

if use_cuda:
    device = torch.device("cuda")
else: 
    device = torch.device("cpu")

print(f"Using device {device}")

第二部分——计算均值、方差

transform = transforms.Compose([
    #将数据转换成Tensor张量
    transforms.ToTensor()
]
)

#读取数据
datasets1 = datasets.MNIST('./data',train=True,download = True, transform =transform)
datasets1_len = len(datasets1)

#设置数据加载器、批次大小全部图片
train_loader = torch.utils.data.DataLoader(datasets1, batch_size=datasets1_len, shuffle = True)

#循环训练集 DataLoader,0是起始索引
for batch_idx, data in enumerate(train_loader,0):
    inputs, targets = data 
    #将训练集图(60000,1,28,28)像转换为(60000*1,28*28)的二维数组,-1 是占位符用于自动计算维度大小
    x = inputs.view(-1,28*28)
    
    #计算均值-0.3081
    x_mean =x.mean().item()
    #计算标准差-0.1307
    x_std =x.std().item()

print(f"mean: {x_mean}, std: {x_std}")
#mean: 0.13066047430038452, std: 0.30810782313346863

第三部分——网络模型

#自定义类构建模型、继承torch.nn.module初始化网络模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.fc1 = torch.nn.Linear(784, 128)#Liner线性加权求和,784是input,128是当前层神经元个数
        self.dropout = torch.nn.Dropout(p = 0.2)
        self.fc2 = torch.nn.Linear(128, 10)#input=上一层的神经元个数,输出是10,做一个0-9的10分类

    def forward(self, x):
        #把x的每条数据展成一维数组28*28=784
        x = torch.flatten(x,1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)#做完softmax然后取log,便于后续计算损失函数(损失函数需要取log)
        return output       

  

第四部分——训练策略、测试策略

#创建实例
model = Net().to(device)

#每个批次如何训练
def train_step(data, target, model, optimizer):
    optimizer.zero_grad()#梯度归零
    output = model(data)
    loss = F.nll_loss(output,target)#nll是负对数似然,output是y_head,target是y_true
    loss.backward()#反向传播求梯度
    optimizer.step()#根据梯度更新网络
    return loss

#每个批次如何测试
def test(data, target, model, test_loss, correct):
    output = model(data)
    #累积计算每个批次的损失
    test_loss += F.nll_loss(output,target,reduction='sum').item()
    #获取对数概率最大对应的索引,dim=1:表示选取每一行概率最大的索引,keepdim = True 表示维度保持不变
    pred = output.argmax(dim=1, keepdim=True)
    #统计预测值与正确值相同的数量,eq在做比较,返回True/Fasle,sum是求和,item是将数据取出来(原来是tensor)
    correct += pred.eq(target.view_as(pred)).sum().item()
    return test_loss, correct

第五部分——开始训练

#真正分轮次训练
EPOCHS = 5

#调参优化器,lr是学习率
optimizer = torch.optim.Adam(model.parameters(), lr=0.003)

for epoch in range(EPOCHS):
    model.train()#设置为训练模式:BN层计算的是均值方差
    for batch_index, (data, target) in enumerate(train_loader):
        data, target = data.to(device),target.to(device)
        loss = train_step(data, target, model, optimizer)
        #每隔10个批次打印一次信息
        if batch_index%10 ==0:
            print('Train Epoch:{epoch} [{batch}/{total_batch} {percent}%] train_loss:{loss:.3f}'.format(
            epoch=epoch+1,#第几个批次
            batch = batch_index*len(data),#已跑多少数据
            total_batch = len(train_loader.dataset),#当前轮总数据条数
            percent = 100.0*batch_index/len(train_loader),#当前轮数已占训练集百分比
            loss = loss.item()#损失是tensor,转为数值
            ))       

    #设置为测试模式:BN层计算的是滑动平均,Droput层不进行预测
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():#不求梯度
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            test_loss, correct = test_step(data, target, model, test_loss, correct)    
    test_loss = test_loss/len(test_loader.dataset)
    
    print('\n Average loss: {:.4f}, Accuracy: {}/{} ({:.3f}%)\n'.format(
        test_loss,
        correct,
        len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)
    ))

完整代码

import torch
from torchvision import datasets, transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

use_cuda = torch.cuda.is_available()

if use_cuda:
    device = torch.device("cuda")
else: 
    device = torch.device("cpu")

print(f"Using device {device}")

  
#数据预处理
transform = transforms.Compose([
    #将数据转换成Tensor张量
    transforms.ToTensor(),
    #图片数据归一化:0.1307是均值,0.3081是方差。数值和数据集有关系
    transforms.Normalize((0.1307),(0.3081))
]
)

#读取数据
datasets1 =datasets.MNIST('./data',train=True,download = True, transform =transform)
datasets2 =datasets.MNIST('./data',train=False,download = True, transform =transform)


#设置数据加载器、批次大小128、是否打乱顺序-是
train_loader = torch.utils.data.DataLoader(datasets1, batch_size=128, shuffle = True)
#测试批次可以大,测试集不需要打乱顺序-False
test_loader = torch.utils.data.DataLoader(datasets2, batch_size =1000,shuffle = False)

#自定义类构建模型、继承torch.nn.module初始化网络模型
class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.fc1 = torch.nn.Linear(784, 128)#Liner线性加权求和,784是input,128是当前层神经元个数
        self.dropout = torch.nn.Dropout(p = 0.2)
        self.fc2 = torch.nn.Linear(128, 10)#input=上一层的神经元个数,输出是10,做一个0-9的10分类

    def forward(self, x):
        #把x的每条数据展成一维数组28*28=784
        x = torch.flatten(x,1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)#做完softmax然后取log,便于后续计算损失函数(损失函数需要取log)
        return output       


#创建实例
model = Net().to(device)

#每个批次如何训练
def train_step(data, target, model, optimizer):
    optimizer.zero_grad()#梯度归零
    output = model(data)
    loss = F.nll_loss(output,target)#nll是负对数似然,output是y_head,target是y_true
    loss.backward()#反向传播求梯度
    optimizer.step()#根据梯度更新网络
    return loss

#每个批次如何测试
def test_step(data, target, model, test_loss, correct):
    output = model(data)
    #累积计算每个批次的损失
    test_loss += F.nll_loss(output,target,reduction='sum').item()
    #获取对数概率最大对应的索引,dim=1:表示选取每一行概率最大的索引,keepdim = True 表示维度保持不变
    pred = output.argmax(dim=1, keepdim=True)
    #统计预测值与正确值相同的数量,eq在做比较,返回True/Fasle,sum是求和,item是将数据取出来(原来是tensor)
    correct += pred.eq(target.view_as(pred)).sum().item()
    return test_loss, correct


#真正分轮次训练
EPOCHS = 5

#调参优化器,lr是学习率
optimizer = torch.optim.Adam(model.parameters(), lr=0.003)

for epoch in range(EPOCHS):
    model.train()#设置为训练模式:BN层计算的是均值方差
    for batch_index, (data, target) in enumerate(train_loader):
        data, target = data.to(device),target.to(device)
        loss = train_step(data, target, model, optimizer)
        #每隔10个批次打印一次信息
        if batch_index%10 ==0:
            print('Train Epoch:{epoch} [{batch}/{total_batch} {percent}%] train_loss:{loss:.3f}'.format(
            epoch=epoch+1,#第几个批次
            batch = batch_index*len(data),#已跑多少数据
            total_batch = len(train_loader.dataset),#当前轮总数据条数
            percent = 100.0*batch_index/len(train_loader),#当前轮数已占训练集百分比
            loss = loss.item()#损失是tensor,转为数值
            ))       

    #设置为测试模式:BN层计算的是滑动平均,Droput层不进行预测
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():#不求梯度
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            test_loss, correct = test_step(data, target, model, test_loss, correct)    
    test_loss = test_loss/len(test_loader.dataset)
    
    print('\n Average loss: {:.4f}, Accuracy: {}/{} ({:.3f}%)\n'.format(
        test_loss,
        correct,
        len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)
    ))


网站公告

今日签到

点亮在社区的每一天
去签到