代码随想录学习摘抄day3(哈希表)

发布于:2025-08-19 ⋅ 阅读:(15) ⋅ 点赞:(0)

定义:

散列表,哈希表是根据关键码的值而直接进行访问的数据结构。
在这里插入图片描述

使用情况

当我们需要查询一个元素是否出现过,或者一个元素是否在集合里的时候,就要第一时间想到哈希法。

特殊情况(哈希碰撞:两个值存在同一个位置)

拉链法(存入链表拉长)

在这里插入图片描述

线性探测法(找空位)

在这里插入图片描述

题型:

有效的字母异位词:

给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。

示例 1: 输入: s = “anagram”, t = “nagaram” 输出: true

示例 2: 输入: s = “rat”, t = “car” 输出: false

说明: 你可以假设字符串只包含小写字母。
在这里插入图片描述

class Solution {
public:
    bool isAnagram(string s, string t) {
        int record[26] = {0};
        for (int i = 0; i < s.size(); i++) {
            // 并不需要记住字符a的ASCII,只要求出一个相对数值就可以了
            record[s[i] - 'a']++;
        }
        for (int i = 0; i < t.size(); i++) {
            record[t[i] - 'a']--;
        }
        for (int i = 0; i < 26; i++) {
            if (record[i] != 0) {
                // record数组如果有的元素不为零0,说明字符串s和t 一定是谁多了字符或者谁少了字符。
                return false;
            }
        }
        // record数组所有元素都为零0,说明字符串s和t是字母异位词
        return true;
    }
};

有效的字母异位词两个数组的交集:

在这里插入图片描述

class Solution {
public:
    vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
        unordered_set<int> result_set; // 存放结果,之所以用set是为了给结果集去重
        int hash[1005] = {0}; // 默认数值为0
        for (int num : nums1) { // nums1中出现的字母在hash数组中做记录
            hash[num] = 1;
        }
        for (int num : nums2) { // nums2中出现话,result记录
            if (hash[num] == 1) {
                result_set.insert(num);
            }
        }
        return vector<int>(result_set.begin(), result_set.end());
    }
};

快乐数:

编写一个算法来判断一个数 n 是不是快乐数。

「快乐数」定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。

如果 n 是快乐数就返回 True ;不是,则返回 False 。

示例:

输入:19
输出:true
解释:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1

思路

使用哈希法,来判断这个sum是否重复出现,如果重复了就是return false, 否则一直找到sum为1为止。

判断sum是否重复出现就可以使用unordered_set。

class Solution {
public:
    // 取数值各个位上的单数之和
    int getSum(int n) {
        int sum = 0;
        while (n) {
            sum += (n % 10) * (n % 10);
            n /= 10;
        }
        return sum;
    }
    bool isHappy(int n) {
        unordered_set<int> set;
        while(1) {
            int sum = getSum(n);
            if (sum == 1) {
                return true;
            }
            // 如果这个sum曾经出现过,说明已经陷入了无限循环了,立刻return false
            if (set.find(sum) != set.end()) {
                return false;
            } else {
                set.insert(sum);
            }
            n = sum;
        }
    }
};

两数之和:

给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。

示例:

给定 nums = [2, 7, 11, 15], target = 9

因为 nums[0] + nums[1] = 2 + 7 = 9

所以返回 [0, 1]

思路

在遍历数组的时候,只需要向map去查询是否有和目前遍历元素匹配的数值,如果有,就找到的匹配对,如果没有,就把目前遍历的元素放进map中,因为map存放的就是我们访问过的元素。

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        std::unordered_map <int,int> map;
        for(int i = 0; i < nums.size(); i++) {
            // 遍历当前元素,并在map中寻找是否有匹配的key
            auto iter = map.find(target - nums[i]); 
            if(iter != map.end()) {
                return {iter->second, i};
            }
            // 如果没找到匹配对,就把访问过的元素和下标加入到map中
            map.insert(pair<int, int>(nums[i], i)); 
        }
        return {};
    }
};

四数相加II:

给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0。

为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500 。所有整数的范围在 -2^28 到 2^28 - 1 之间,最终结果不会超过 2^31 - 1 。

例如:

输入:

A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
输出:

2

解释:

两个元组如下:

(0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
(1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0

思路:找到A[i] + B[j] + C[k] + D[l] = 0

首先定义 一个unordered_map,key放a和b两数之和,value 放a和b两数之和出现的次数。
遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。
定义int变量count,用来统计 a+b+c+d = 0 出现的次数。
再遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。
最后返回统计值 count 就可以了

class Solution {
public:
    int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
        unordered_map<int, int> umap; //key:a+b的数值,value:a+b数值出现的次数
        // 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中
        for (int a : A) {
            for (int b : B) {
                umap[a + b]++;
            }
        }
        int count = 0; // 统计a+b+c+d = 0 出现的次数
        // 再遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就把map中key对应的value也就是出现次数统计出来。
        for (int c : C) {
            for (int d : D) {
                if (umap.find(0 - (c + d)) != umap.end()) {
                    count += umap[0 - (c + d)];
                }
            }
        }
        return count;
    }
};

赎金信:

给定一个赎金信 (ransom) 字符串和一个杂志(magazine)字符串,判断第一个字符串 ransom 能不能由第二个字符串 magazines 里面的字符构成。如果可以构成,返回 true ;否则返回 false。

(题目说明:为了不暴露赎金信字迹,要从杂志上搜索各个需要的字母,组成单词来表达意思。杂志字符串中的每个字符只能在赎金信字符串中使用一次。)

注意:

你可以假设两个字符串均只含有小写字母。

canConstruct(“a”, “b”) -> false
canConstruct(“aa”, “ab”) -> false
canConstruct(“aa”, “aab”) -> true

思路:

用一个长度为26的数组来记录magazine里字母出现的次数。

然后再用ransomNote去验证这个数组是否包含了ransomNote所需要的所有字母。

class Solution {
public:
    bool canConstruct(string ransomNote, string magazine) {
        int record[26] = {0};
        //add
        if (ransomNote.size() > magazine.size()) {
            return false;
        }
        for (int i = 0; i < magazine.length(); i++) {
            // 通过record数据记录 magazine里各个字符出现次数
            record[magazine[i]-'a'] ++;
        }
        for (int j = 0; j < ransomNote.length(); j++) {
            // 遍历ransomNote,在record里对应的字符个数做--操作
            record[ransomNote[j]-'a']--;
            // 如果小于零说明ransomNote里出现的字符,magazine没有
            if(record[ransomNote[j]-'a'] < 0) {
                return false;
            }
        }
        return true;
    }
};

三数之和:

给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。

注意: 答案中不可以包含重复的三元组。

示例:

给定数组 nums = [-1, 0, 1, 2, -1, -4],

满足要求的三元组集合为: [ [-1, 0, 1], [-1, -1, 2] ]

思路:

两层for循环就可以确定 两个数值,可以使用哈希法来确定 第三个数 0-(a+b) 或者 0 - (a + c) 是否在 数组里出现过

class Solution {
public:
    // 在一个数组中找到3个数形成的三元组,它们的和为0,不能重复使用(三数下标互不相同),且三元组不能重复。
    // b(存储)== 0-(a+c)(检索)
    vector<vector<int>> threeSum(vector<int>& nums) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        
        for (int i = 0; i < nums.size(); i++) {
            // 如果a是正数,a<b<c,不可能形成和为0的三元组
            if (nums[i] > 0)
                break;
            
            // [a, a, ...] 如果本轮a和上轮a相同,那么找到的b,c也是相同的,所以去重a
            if (i > 0 && nums[i] == nums[i - 1])
                continue;
            
            // 这个set的作用是存储b
            unordered_set<int> set;
            
            for (int k = i + 1; k < nums.size(); k++) {
                // 去重b=c时的b和c
                if (k > i + 2 && nums[k] == nums[k - 1] && nums[k - 1] == nums[k - 2])
                    continue;
                
                // a+b+c=0 <=> b=0-(a+c)
                int target = 0 - (nums[i] + nums[k]);
                if (set.find(target) != set.end()) {
                    result.push_back({nums[i], target, nums[k]});   // nums[k]成为c
                    set.erase(target);
                }
                else {
                    set.insert(nums[k]);                            // nums[k]成为b
                }
            }
        }

        return result;
    }
};

四数之和:

题意:给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。

注意:

答案中不可以包含重复的四元组。

示例: 给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。 满足要求的四元组集合为: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]

class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        for (int k = 0; k < nums.size(); k++) {
            // 剪枝处理
            if (nums[k] > target && nums[k] >= 0) {
            	break; // 这里使用break,统一通过最后的return返回
            }
            // 对nums[k]去重
            if (k > 0 && nums[k] == nums[k - 1]) {
                continue;
            }
            for (int i = k + 1; i < nums.size(); i++) {
                // 2级剪枝处理
                if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
                    break;
                }

                // 对nums[i]去重
                if (i > k + 1 && nums[i] == nums[i - 1]) {
                    continue;
                }
                int left = i + 1;
                int right = nums.size() - 1;
                while (right > left) {
                    // nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
                    if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
                        right--;
                    // nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
                    } else if ((long) nums[k] + nums[i] + nums[left] + nums[right]  < target) {
                        left++;
                    } else {
                        result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
                        // 对nums[left]和nums[right]去重
                        while (right > left && nums[right] == nums[right - 1]) right--;
                        while (right > left && nums[left] == nums[left + 1]) left++;

                        // 找到答案时,双指针同时收缩
                        right--;
                        left++;
                    }
                }

            }
        }
        return result;
    }
};

总结:

常见的三种哈希结构:
数组
set(集合)
map(映射)


网站公告

今日签到

点亮在社区的每一天
去签到