D1 参考
rt-thread官方sdk中,正点原子stm32f429-atk-appollo的board中有audio文件夹,包括了mic/play的程序,wm8978的库文件
因为我们基于stm32h750内置adc+dac设计,所以不需要wm8978.c/h。只需要移植drv_sound.c和drv_mic.c
D2 工程名字和路径
D3 程序中所用到的关键c文件在工程中的路径
D4 drv_sound.c所作修改简单说明
- 总的内容与前一篇文章完全一样,这里只说不同的地方
- 定义了一个播放线程,用于与cherryusb uac交互。通过mailbox与play_thread_entry交互,通过uac中的usbd_audio_out_callback回调函数,将录音数据的nbytes发送给这里的play_thread_entry线程。
- 在play_thread_entry线程中,通过rt_mb_recv函数,接收usbd_audio_out_callback发送来的nbytes,read_buffer以全局变量的方式访问,进行数据处理后,然后通过rt_device_write函数,将数据写入到sound0设备中。
- 因为uac发送的双声道立体声,16bits signed。我们取左右声道的平均值,然后转换为12bits unsigned,再写入到sound0设备中。因为我们的dac player只有一个,而且是12bits的。
- 注意!我们将usbd_ep_start_read的读,放到了play_thread_entry线程中(原来是在usbd_audio_out_callback), 从生产者与消费者模型角度上说,这样可以实现更好的同步效果。
/****************************************************************************
* @brief 录音线程, 与usb交互
****************************************************************************/
#include "usbd_core.h"
void play_thread_entry(void *parameter)
{
#define AUDIO_OUT_PACKET 64
#define AUDIO_OUT_EP 0x02
extern uint8_t read_buffer[AUDIO_OUT_PACKET];
uint16_t *pdata =rt_malloc(AUDIO_OUT_PACKET);
rt_device_t sound_dev;
rt_size_t written;
// generate_sin_table();
sound_dev = rt_device_find("sound0");
rt_device_open(sound_dev, RT_DEVICE_OFLAG_WRONLY);
while(1){
if (rt_mb_recv(dac_mbox, &written, RT_WAITING_FOREVER) == RT_EOK)
{
for(int i=0; i<written/2; i++){
/*取左右声道的平均值*/
int32_t v=(((int16_t *)read_buffer)[2*i]+((int16_t*)read_buffer)[2*i+1])/2 + 32768;
/*16bits signed => 12bits unsigned*/
pdata[i]=(uint16_t)v>>4;
}
written = rt_device_write(sound_dev, 0, pdata, written/2);
usbd_ep_start_read(0, AUDIO_OUT_EP, read_buffer, AUDIO_OUT_PACKET); /*在线程中启动下次读,同步效果更好*/
}
}
}
int play_thread()
{
rt_thread_t thread;
thread = rt_thread_create("play_thread", play_thread_entry, RT_NULL, 2048, 2, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
return 0;
}
INIT_APP_EXPORT(play_thread);
D5 drv_mic.c所作修改简单说明
- 总的内容与前一篇文章完全一样,这里只说不同的地方
- 定义了一个录音线程,用于与cherryusb uac交互。通过rt_device_read函数,从mic0设备中读取数据,经过数据处理后,通过usbd_ep_start_write发送给usb。线程发送与usb的中断回调,目前直接通过标志变量ep_tx_busy_flag进行同步。其实更高级的做法是用rt-thread的完成量来进行同步。
- 因为uac需要的双声道立体声,16bits signed。而我们的adc只有1个,而且是16bits unsigned。所以需要做转换。通过复制填充的方式,让左右声道填充相同的数据。
/****************************************************************************
* @brief 录音线程, 与usb交互
****************************************************************************/
#include "usbd_core.h"
static void record_thread_entry(void *parameter)
{
extern volatile bool tx_flag;
#define AUDIO_IN_PACKET 64
#define AUDIO_IN_EP 0x81
extern volatile uint8_t ep_tx_busy_flag;
extern uint8_t write_buffer[AUDIO_IN_PACKET];
rt_device_t mic_dev = rt_device_find("mic0");
rt_device_open(mic_dev, RT_DEVICE_OFLAG_RDONLY);
struct rt_audio_caps caps;
caps.main_type = AUDIO_TYPE_INPUT;
caps.sub_type = AUDIO_DSP_PARAM;
caps.udata.config.samplerate = 16000;
caps.udata.config.channels = 1;
caps.udata.config.samplebits = 16;
rt_device_control(mic_dev, AUDIO_CTL_CONFIGURE, &caps);
uint16_t *buffer = (uint16_t *)rt_malloc(AUDIO_IN_PACKET/2);
int16_t *pwbuffer=(int16_t *)write_buffer;
while (1)
{
if (tx_flag) {
rt_size_t size = rt_device_read(mic_dev, 0, buffer, AUDIO_IN_PACKET/2); /*因为要复制扩倍, 因此只需要读一半的数量*/
if (size)
{
for(int i = 0; i < size/2; i++) {
pwbuffer[2*i] = (int16_t)(buffer[i] - 32768);
pwbuffer[2*i+1] = (int16_t)(buffer[i] - 32768); /*2个声道, repeat填充*/
}
ep_tx_busy_flag = 1;
usbd_ep_start_write(0, AUDIO_IN_EP, write_buffer, size*2);
while(ep_tx_busy_flag){
}
}
}
else {
rt_thread_delay(10);
}
}
}
int record_thread()
{
rt_thread_t thread;
thread = rt_thread_create("record_thread_entry", record_thread_entry, RT_NULL, 2048, 2, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
return 0;
}
INIT_APP_EXPORT(record_thread);
D6 audio_v1_mic_speaker_multichan_template.c所作修改简单说明
- 在usbd_audio_out_callback中,通过rt_mb_send发送nbytes变量值给play_thread_entry线程
- 在usbd_audio_out_callback中,注意!我们注释了usbd_ep_start_read,因为我们在play_thread_entry线程中启动了下一次读取。这种同步效果更好。
- usbd_audio_in_callback没有做修改,它的功能只是简单的设置ep_tx_busy_flag为false,用于同步。(其实可以考虑用rt-thread的完成量)
void usbd_audio_out_callback(uint8_t busid, uint8_t ep, uint32_t nbytes)
{
// USB_LOG_RAW("actual out len:%d\r\n", nbytes);
extern rt_mailbox_t dac_mbox;
rt_mb_send(dac_mbox, nbytes);
/* 继续启动下一次 USB 读取 */
// usbd_ep_start_read(busid, AUDIO_OUT_EP, read_buffer, AUDIO_OUT_PACKET);
}
void usbd_audio_in_callback(uint8_t busid, uint8_t ep, uint32_t nbytes)
{
// USB_LOG_RAW("actual in len:%d\r\n", nbytes);
ep_tx_busy_flag = false;
}
D7 wavplayer的修改
- 跟前一篇文章一样, 有2个地方是bug要做修改, 有2个地方要做数据转换处理修改
- 请参考前一篇文章
D8 测试
- 播放仙剑奇侠传主题曲,效果不错
录音后再播放,效果不错。录音清晰。
下面是打印的log
[D/drv.sdram] sdram init success, mapped at 0xC0000000, size is 33554432 bytes, data width is 16
\ | /
- RT - Thread Operating System
/ | \ 5.2.0 build Aug 16 2025 09:59:24
2006 - 2024 Copyright by RT-Thread team
samplerate: 16000
samplebits: 16
channels: 1
ramdisk0 device found
[E/app.port_sdcard] SD card device not found
[I/USB] ========== dwc2 udc params ==========
[I/USB] CID:00002300
[I/USB] GSNPSID:4f54330a
[I/USB] GHWCFG1:00000000
[I/USB] GHWCFG2:229fe190
[I/USB] GHWCFG3:03b8d2e8
[I/USB] GHWCFG4:e3f00030
[I/USB] dwc2 fsphy type:1, hsphy type:2, dma support:2
[I/USB] dwc2 has 9 endpoints and dfifo depth(32-bit words) is 952, default config: 9 endpoints
[I/USB] =================================
msh />[I/USB] fifo0 size:0010, offset:0100
[I/USB] fifo1 size:0200, offset:0110
[I/USB] fifo2 size:0010, offset:0310
[I/USB] fifo3 size:0010, offset:0320
[I/USB] fifo4 size:0010, offset:0330
[I/USB] fifo5 size:0010, offset:0340
[I/USB] fifo6 size:0010, offset:0350
[I/USB] fifo7 size:0010, offset:0360
[I/USB] fifo8 size:0010, offset:0370
[32m[I/SDIO] SD card capacity 31166976 KB.
CLOSE1
CLOSE2
CLOSE1
CLOSE2
OPEN1
OPEN2
CLOSE2
D9 附录1:drv_sound.c
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-28 Ernest the first version
*/
#include "board.h"
#include "drv_sound.h"
#define DBG_TAG "drv.sound"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define TX_DMA_FIFO_SIZE (2048)
struct stm32_audio
{
struct rt_audio_device audio;
struct rt_audio_configure replay_config;
int replay_volume;
rt_uint8_t *tx_fifo;
rt_bool_t startup;
};
struct stm32_audio _stm32_audio_play = {0};
/****************************************************************************
* @brief 与cubeMX硬件初始化相关的变量定义
****************************************************************************/
#define USB_NOCACHE_RAM_SECTION __attribute__((section(".noncacheable")))
#define USB_MEM_ALIGNX __attribute__((aligned(32)))
DAC_HandleTypeDef hdac1;
DMA_HandleTypeDef hdma_dac1_ch2;
TIM_HandleTypeDef htim2;
rt_mailbox_t dac_mbox = RT_NULL;
#define TONE_FREQ (440)
#define SIN_TABLE_SIZE (16000 / TONE_FREQ) /*16kHz/440Hz=36 pts*/
#define M_PI 3.14159265358979323846
uint16_t sin_table[SIN_TABLE_SIZE];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t dac_buffer[TX_DMA_FIFO_SIZE]; // Nocache buffer for DMA, important!
// static void MX_ADC1_Init(void);
static void MX_DAC1_Init(void);
static void MX_TIM2_Init(void);
static void MX_DMA_Init(void);
static void generate_sin_table(void)
{
for (int i = 0; i < SIN_TABLE_SIZE; i++)
{
float angle = 2 * M_PI * i / SIN_TABLE_SIZE;
sin_table[i] = (uint16_t)((sin(angle) + 1.0f) * 2047.5f); // 12-bit DAC, 0-4095 range
}
}
/****************************************************************************
* @brief 要实现的几个dev_audio接口函数
****************************************************************************/
void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac)
{
if (hdac->Instance == DAC1)
{
rt_audio_tx_complete(&_stm32_audio_play.audio);
}
}
void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac)
{
if (hdac->Instance == DAC1)
{
rt_audio_tx_complete(&_stm32_audio_play.audio);
}
}
static rt_err_t stm32_player_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct stm32_audio *st_audio = (struct stm32_audio *)audio->parent.user_data;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
return result;
}
static rt_err_t stm32_player_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct stm32_audio *st_audio = (struct stm32_audio *)audio->parent.user_data;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
switch (caps->main_type)
{
case AUDIO_TYPE_MIXER:
{
switch (caps->sub_type)
{
case AUDIO_MIXER_VOLUME:
{
int volume = caps->udata.value;
st_audio->replay_volume = volume;
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_OUTPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
struct rt_audio_configure config = caps->udata.config;
st_audio->replay_config.samplerate = config.samplerate;
st_audio->replay_config.samplebits = config.samplebits;
st_audio->replay_config.channels = config.channels;
/*只添加调整采样率的功能*/
__HAL_TIM_SET_AUTORELOAD(&htim2, 240000000 / st_audio->replay_config.samplerate - 1);
rt_kprintf("samplerate: %d\n", st_audio->replay_config.samplerate);
rt_kprintf("samplebits: %d\n", st_audio->replay_config.samplebits);
rt_kprintf("channels: %d\n", st_audio->replay_config.channels);
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
default:
break;
}
return result;
}
static rt_err_t stm32_player_init(struct rt_audio_device *audio)
{
MX_DMA_Init();
MX_DAC1_Init();
MX_TIM2_Init();
dac_mbox = rt_mb_create("dac_mbox", 100, RT_IPC_FLAG_FIFO);
return RT_EOK;
}
static rt_err_t stm32_player_start(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_REPLAY)
{
HAL_TIM_Base_Start(&htim2);
HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_2, (uint32_t *) _stm32_audio_play.tx_fifo, TX_DMA_FIFO_SIZE / 2, DAC_ALIGN_12B_R);
}
return RT_EOK;
}
static rt_err_t stm32_player_stop(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_REPLAY)
{
HAL_DAC_Stop_DMA(&hdac1, DAC_CHANNEL_2);
HAL_TIM_Base_Stop(&htim2);
}
return RT_EOK;
}
static void stm32_player_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info)
{
/**
* TX_FIFO
* +----------------+----------------+
* | block1 | block2 |
* +----------------+----------------+
* \ block_size /
*/
info->buffer = _stm32_audio_play.tx_fifo;
info->total_size = TX_DMA_FIFO_SIZE;
info->block_size = TX_DMA_FIFO_SIZE / 2;
info->block_count = 2;
}
static struct rt_audio_ops _p_audio_ops =
{
.getcaps = stm32_player_getcaps,
.configure = stm32_player_configure,
.init = stm32_player_init,
.start = stm32_player_start,
.stop = stm32_player_stop,
.transmit = RT_NULL,
.buffer_info = stm32_player_buffer_info,
};
int rt_hw_sound_init(void)
{
rt_uint8_t *tx_fifo;
/* player */
tx_fifo = /*rt_malloc(TX_DMA_FIFO_SIZE)*/ dac_buffer; /*替换为nocache的dac_buffer, 非常重要! 折腾了几个小时!*/
if (tx_fifo == RT_NULL)
{
return -RT_ENOMEM;
}
rt_memset(tx_fifo, 0, TX_DMA_FIFO_SIZE);
_stm32_audio_play.tx_fifo = tx_fifo;
/* register sound device */
_stm32_audio_play.audio.ops = &_p_audio_ops;
rt_audio_register(&_stm32_audio_play.audio, "sound0", RT_DEVICE_FLAG_WRONLY, &_stm32_audio_play);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_sound_init);
/****************************************************************************
* @brief 录音线程, 与usb交互
****************************************************************************/
#include "usbd_core.h"
void play_thread_entry(void *parameter)
{
#define AUDIO_OUT_PACKET 64
#define AUDIO_OUT_EP 0x02
extern uint8_t read_buffer[AUDIO_OUT_PACKET];
uint16_t *pdata =rt_malloc(AUDIO_OUT_PACKET);
rt_device_t sound_dev;
rt_size_t written;
// generate_sin_table();
sound_dev = rt_device_find("sound0");
rt_device_open(sound_dev, RT_DEVICE_OFLAG_WRONLY);
while(1){
if (rt_mb_recv(dac_mbox, &written, RT_WAITING_FOREVER) == RT_EOK)
{
for(int i=0; i<written/2; i++){
/*取左右声道的平均值*/
int32_t v=(((int16_t *)read_buffer)[2*i]+((int16_t*)read_buffer)[2*i+1])/2 + 32768;
/*16bits signed => 12bits unsigned*/
pdata[i]=(uint16_t)v>>4;
}
written = rt_device_write(sound_dev, 0, pdata, written/2);
usbd_ep_start_read(0, AUDIO_OUT_EP, read_buffer, AUDIO_OUT_PACKET);
}
}
}
int play_thread()
{
rt_thread_t thread;
thread = rt_thread_create("play_thread", play_thread_entry, RT_NULL, 2048, 2, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
return 0;
}
INIT_APP_EXPORT(play_thread);
/****************************************************************************
* @brief CubeMX底层硬件初始化, 包括xx_MSPInit(), xx_Init(), xx_IRQHandler()
****************************************************************************/
/**
* @brief DAC MSP Initialization
* This function configures the hardware resources used in this example
* @param hdac: DAC handle pointer
* @retval None
*/
void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(hdac->Instance==DAC1)
{
/* USER CODE BEGIN DAC1_MspInit 0 */
/* USER CODE END DAC1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_DAC12_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**DAC1 GPIO Configuration
PA5 ------> DAC1_OUT2
*/
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* DAC1 DMA Init */
/* DAC1_CH2 Init */
hdma_dac1_ch2.Instance = DMA1_Stream1;
hdma_dac1_ch2.Init.Request = DMA_REQUEST_DAC2;
hdma_dac1_ch2.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_dac1_ch2.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_dac1_ch2.Init.MemInc = DMA_MINC_ENABLE;
hdma_dac1_ch2.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_dac1_ch2.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_dac1_ch2.Init.Mode = DMA_CIRCULAR;
hdma_dac1_ch2.Init.Priority = DMA_PRIORITY_LOW;
hdma_dac1_ch2.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_dac1_ch2.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL;
hdma_dac1_ch2.Init.MemBurst = DMA_MBURST_INC4;
hdma_dac1_ch2.Init.PeriphBurst = DMA_PBURST_SINGLE;
if (HAL_DMA_Init(&hdma_dac1_ch2) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(hdac,DMA_Handle2,hdma_dac1_ch2);
/* USER CODE BEGIN DAC1_MspInit 1 */
/* USER CODE END DAC1_MspInit 1 */
}
}
/**
* @brief DAC MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hdac: DAC handle pointer
* @retval None
*/
void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac)
{
if(hdac->Instance==DAC1)
{
/* USER CODE BEGIN DAC1_MspDeInit 0 */
/* USER CODE END DAC1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_DAC12_CLK_DISABLE();
/**DAC1 GPIO Configuration
PA5 ------> DAC1_OUT2
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5);
/* DAC1 DMA DeInit */
HAL_DMA_DeInit(hdac->DMA_Handle2);
/* USER CODE BEGIN DAC1_MspDeInit 1 */
/* USER CODE END DAC1_MspDeInit 1 */
}
}
/**
* @brief TIM_Base MSP Initialization
* This function configures the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */
/* USER CODE END TIM2_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM2_CLK_ENABLE();
/* USER CODE BEGIN TIM2_MspInit 1 */
/* USER CODE END TIM2_MspInit 1 */
}
}
/**
* @brief TIM_Base MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */
/* USER CODE END TIM2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM2_CLK_DISABLE();
/* USER CODE BEGIN TIM2_MspDeInit 1 */
/* USER CODE END TIM2_MspDeInit 1 */
}
}
/**
* @brief DAC1 Initialization Function
* @param None
* @retval None
*/
static void MX_DAC1_Init(void)
{
/* USER CODE BEGIN DAC1_Init 0 */
/* USER CODE END DAC1_Init 0 */
DAC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN DAC1_Init 1 */
/* USER CODE END DAC1_Init 1 */
/** DAC Initialization
*/
hdac1.Instance = DAC1;
if (HAL_DAC_Init(&hdac1) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT2 config
*/
sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
sConfig.DAC_Trigger = DAC_TRIGGER_T2_TRGO;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE;
sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DAC1_Init 2 */
/* USER CODE END DAC1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 240e6/16e3;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief This function handles DMA1 stream1 global interrupt.
*/
void DMA1_Stream1_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Stream1_IRQn 0 */
/* USER CODE END DMA1_Stream1_IRQn 0 */
rt_base_t level = rt_hw_interrupt_disable();
HAL_DMA_IRQHandler(&hdma_dac1_ch2);
rt_hw_interrupt_enable(level);
/* USER CODE BEGIN DMA1_Stream1_IRQn 1 */
/* USER CODE END DMA1_Stream1_IRQn 1 */
}
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn);
}
D10 附录2:drv_mic.c
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-28 Ernest the first version
*/
#include "board.h"
#include "drv_mic.h"
#define DBG_TAG "drv.mic"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define RX_DMA_FIFO_SIZE (2048)
struct stm32_mic
{
struct rt_audio_device audio;
struct rt_audio_configure config;
rt_uint8_t *rx_fifo;
rt_bool_t startup;
};
static struct stm32_mic _stm32_audio_record = {0};
/****************************************************************************
* @brief 与cubeMX硬件初始化相关的变量定义
****************************************************************************/
#define USB_NOCACHE_RAM_SECTION __attribute__((section(".noncacheable")))
#define USB_MEM_ALIGNX __attribute__((aligned(32)))
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
extern TIM_HandleTypeDef htim2;
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t adc_buffer[RX_DMA_FIFO_SIZE]; // Nocache buffer for DMA, important!
static void MX_ADC1_Init(void);
static void MX_TIM2_Init(void);
static void MX_DMA_Init(void);
/****************************************************************************
* @brief 要实现的几个dev_audio接口函数
****************************************************************************/
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
rt_audio_rx_done(&(_stm32_audio_record.audio), &_stm32_audio_record.rx_fifo[RX_DMA_FIFO_SIZE / 2], RX_DMA_FIFO_SIZE / 2);
}
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
rt_audio_rx_done(&(_stm32_audio_record.audio), &_stm32_audio_record.rx_fifo[0], RX_DMA_FIFO_SIZE / 2);
}
}
static rt_err_t stm32_mic_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
return result;
}
static rt_err_t stm32_mic_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
switch (caps->main_type)
{
case AUDIO_TYPE_INPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
_stm32_audio_record.config.samplerate = caps->udata.config.samplerate;
_stm32_audio_record.config.channels = caps->udata.config.channels;
_stm32_audio_record.config.samplebits = caps->udata.config.samplebits;
/*只添加调整采样率的功能*/
__HAL_TIM_SET_AUTORELOAD(&htim2, 240000000 / _stm32_audio_record.config.samplerate - 1);
rt_kprintf("samplerate: %d\n", _stm32_audio_record.config.samplerate);
rt_kprintf("samplebits: %d\n", _stm32_audio_record.config.samplebits);
rt_kprintf("channels: %d\n", _stm32_audio_record.config.channels);
break;
}
default:
result = -RT_ERROR;
break;
}
/* After set config, MCLK will stop */
break;
}
default:
break;
}
return result;
}
static rt_err_t stm32_mic_init(struct rt_audio_device *audio)
{
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM2_Init();
return RT_EOK;
}
static rt_err_t stm32_mic_start(struct rt_audio_device *audio, int stream)
{
rt_err_t result = RT_EOK;
if (stream == AUDIO_STREAM_RECORD)
{
HAL_TIM_Base_Start(&htim2);
HAL_ADC_Start_DMA(&hadc1, (uint32_t *) _stm32_audio_record.rx_fifo, RX_DMA_FIFO_SIZE/2);
}
return result;
}
static rt_err_t stm32_mic_stop(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_RECORD)
{
HAL_ADC_Stop_DMA(&hadc1);
HAL_TIM_Base_Stop(&htim2);
}
return RT_EOK;
}
static struct rt_audio_ops _mic_audio_ops =
{
.getcaps = stm32_mic_getcaps,
.configure = stm32_mic_configure,
.init = stm32_mic_init,
.start = stm32_mic_start,
.stop = stm32_mic_stop,
.transmit = RT_NULL,
.buffer_info = RT_NULL,
};
int rt_hw_mic_init(void)
{
struct rt_audio_device *audio = &_stm32_audio_record.audio;
/* mic default */
_stm32_audio_record.rx_fifo = /*rt_calloc(1, RX_DMA_FIFO_SIZE)*/ adc_buffer; /*替换为nocache的adc_buffer, 非常重要! 折腾了几个小时!*/
if (_stm32_audio_record.rx_fifo == RT_NULL)
{
return -RT_ENOMEM;
}
_stm32_audio_record.config.channels = 1;
_stm32_audio_record.config.samplerate = 16000;
_stm32_audio_record.config.samplebits = 16;
/* register mic device */
audio->ops = &_mic_audio_ops;
rt_audio_register(audio, "mic0", RT_DEVICE_FLAG_RDONLY, &_stm32_audio_record);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_mic_init);
/****************************************************************************
* @brief 录音线程, 与usb交互
****************************************************************************/
#include "usbd_core.h"
static void record_thread_entry(void *parameter)
{
extern volatile bool tx_flag;
#define AUDIO_IN_PACKET 64
#define AUDIO_IN_EP 0x81
extern volatile uint8_t ep_tx_busy_flag;
extern uint8_t write_buffer[AUDIO_IN_PACKET];
rt_device_t mic_dev = rt_device_find("mic0");
rt_device_open(mic_dev, RT_DEVICE_OFLAG_RDONLY);
struct rt_audio_caps caps;
caps.main_type = AUDIO_TYPE_INPUT;
caps.sub_type = AUDIO_DSP_PARAM;
caps.udata.config.samplerate = 16000;
caps.udata.config.channels = 1;
caps.udata.config.samplebits = 16;
rt_device_control(mic_dev, AUDIO_CTL_CONFIGURE, &caps);
uint16_t *buffer = (uint16_t *)rt_malloc(AUDIO_IN_PACKET/2);
int16_t *pwbuffer=(int16_t *)write_buffer;
while (1)
{
if (tx_flag) {
rt_size_t size = rt_device_read(mic_dev, 0, buffer, AUDIO_IN_PACKET/2); /*因为要复制扩倍, 因此只需要读一半的数量*/
if (size)
{
for(int i = 0; i < size/2; i++) {
pwbuffer[2*i] = (int16_t)(buffer[i] - 32768);
pwbuffer[2*i+1] = (int16_t)(buffer[i] - 32768); /*2个声道, repeat填充*/
}
ep_tx_busy_flag = 1;
usbd_ep_start_write(0, AUDIO_IN_EP, write_buffer, size*2);
while(ep_tx_busy_flag){
}
}
}
else {
rt_thread_delay(10);
}
}
}
int record_thread()
{
rt_thread_t thread;
thread = rt_thread_create("record_thread_entry", record_thread_entry, RT_NULL, 2048, 2, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
return 0;
}
INIT_APP_EXPORT(record_thread);
/****************************************************************************
* @brief CubeMX底层硬件初始化, 包括xx_MSPInit(), xx_Init(), xx_IRQHandler()
****************************************************************************/
/**
* @brief ADC MSP Initialization
* This function configures the hardware resources used in this example
* @param hadc: ADC handle pointer
* @retval None
*/
void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
if(hadc->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspInit 0 */
/* USER CODE END ADC1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_ADC12_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC1 GPIO Configuration
PA1_C ------> ADC1_INP1
*/
HAL_SYSCFG_AnalogSwitchConfig(SYSCFG_SWITCH_PA1, SYSCFG_SWITCH_PA1_OPEN);
/* ADC1 DMA Init */
/* ADC1 Init */
hdma_adc1.Instance = DMA1_Stream0;
hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_adc1.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL;
hdma_adc1.Init.MemBurst = DMA_MBURST_SINGLE;
hdma_adc1.Init.PeriphBurst = DMA_PBURST_INC4;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(hadc,DMA_Handle,hdma_adc1);
/* ADC1 interrupt Init */
HAL_NVIC_SetPriority(ADC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(ADC_IRQn);
/* USER CODE BEGIN ADC1_MspInit 1 */
/* USER CODE END ADC1_MspInit 1 */
}
}
/**
* @brief ADC MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hadc: ADC handle pointer
* @retval None
*/
void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
{
if(hadc->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspDeInit 0 */
/* USER CODE END ADC1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_ADC12_CLK_DISABLE();
/* ADC1 DMA DeInit */
HAL_DMA_DeInit(hadc->DMA_Handle);
/* ADC1 interrupt DeInit */
HAL_NVIC_DisableIRQ(ADC_IRQn);
/* USER CODE BEGIN ADC1_MspDeInit 1 */
/* USER CODE END ADC1_MspDeInit 1 */
}
}
// /**
// * @brief TIM_Base MSP Initialization
// * This function configures the hardware resources used in this example
// * @param htim_base: TIM_Base handle pointer
// * @retval None
// */
// void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
// {
// if(htim_base->Instance==TIM2)
// {
// /* USER CODE BEGIN TIM2_MspInit 0 */
// /* USER CODE END TIM2_MspInit 0 */
// /* Peripheral clock enable */
// __HAL_RCC_TIM2_CLK_ENABLE();
// /* USER CODE BEGIN TIM2_MspInit 1 */
// /* USER CODE END TIM2_MspInit 1 */
// }
// }
// /**
// * @brief TIM_Base MSP De-Initialization
// * This function freeze the hardware resources used in this example
// * @param htim_base: TIM_Base handle pointer
// * @retval None
// */
// void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
// {
// if(htim_base->Instance==TIM2)
// {
// /* USER CODE BEGIN TIM2_MspDeInit 0 */
// /* USER CODE END TIM2_MspDeInit 0 */
// /* Peripheral clock disable */
// __HAL_RCC_TIM2_CLK_DISABLE();
// /* USER CODE BEGIN TIM2_MspDeInit 1 */
// /* USER CODE END TIM2_MspDeInit 1 */
// }
// }
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_16B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T2_TRGO;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DMA_CIRCULAR;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
hadc1.Init.OversamplingMode = DISABLE;
hadc1.Init.Oversampling.Ratio = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
sConfig.OffsetSignedSaturation = DISABLE;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 240e6/16e3;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief This function handles DMA1 stream0 global interrupt.
*/
void DMA1_Stream0_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Stream0_IRQn 0 */
/* USER CODE END DMA1_Stream0_IRQn 0 */
rt_base_t level = rt_hw_interrupt_disable();
HAL_DMA_IRQHandler(&hdma_adc1);
rt_hw_interrupt_enable(level);
/* USER CODE BEGIN DMA1_Stream0_IRQn 1 */
/* USER CODE END DMA1_Stream0_IRQn 1 */
}
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn);
}
D11 附录3:audio_v1_mic_speaker_multichan_template.c
/*
* Copyright (c) 2024, sakumisu
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "usbd_core.h"
#include "usbd_audio.h"
#include "trace_log.h"
#include <rtthread.h>
#include <rtdevice.h>
#define USING_FEEDBACK 0
#define USBD_VID 0xffff
#define USBD_PID 0xffff
#define USBD_MAX_POWER 100
#define USBD_LANGID_STRING 1033
#ifdef CONFIG_USB_HS
#define EP_INTERVAL 0x04
#define FEEDBACK_ENDP_PACKET_SIZE 0x04
#else
#define EP_INTERVAL 0x01
#define FEEDBACK_ENDP_PACKET_SIZE 0x03
#endif
#define AUDIO_IN_EP 0x81
#define AUDIO_OUT_EP 0x02
#define AUDIO_OUT_FEEDBACK_EP 0x83
#define AUDIO_IN_FU_ID 0x02
#define AUDIO_OUT_FU_ID 0x05
/* AUDIO Class Config */
#define AUDIO_SPEAKER_FREQ 16000U
#define AUDIO_SPEAKER_FRAME_SIZE_BYTE 2u
#define AUDIO_SPEAKER_RESOLUTION_BIT 16u
#define AUDIO_MIC_FREQ 16000U
#define AUDIO_MIC_FRAME_SIZE_BYTE 2u
#define AUDIO_MIC_RESOLUTION_BIT 16u
#define AUDIO_SAMPLE_FREQ(frq) (uint8_t)(frq), (uint8_t)((frq >> 8)), (uint8_t)((frq >> 16))
/* AudioFreq * DataSize (2 bytes) * NumChannels (Stereo: 2) */
#define AUDIO_OUT_PACKET ((uint32_t)((AUDIO_SPEAKER_FREQ * AUDIO_SPEAKER_FRAME_SIZE_BYTE * 2) / 1000))
/* 16bit(2 Bytes) 双声道(Mono:2) */
#define AUDIO_IN_PACKET ((uint32_t)((AUDIO_MIC_FREQ * AUDIO_MIC_FRAME_SIZE_BYTE * 2) / 1000))
#if USING_FEEDBACK == 0
#define USB_AUDIO_CONFIG_DESC_SIZ (unsigned long)(9 + \
AUDIO_AC_DESCRIPTOR_INIT_LEN(2) + \
AUDIO_SIZEOF_AC_INPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_FEATURE_UNIT_DESC(2, 1) + \
AUDIO_SIZEOF_AC_OUTPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_INPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_FEATURE_UNIT_DESC(2, 1) + \
AUDIO_SIZEOF_AC_OUTPUT_TERMINAL_DESC + \
AUDIO_AS_DESCRIPTOR_INIT_LEN(1) + \
AUDIO_AS_DESCRIPTOR_INIT_LEN(1))
#else
#define USB_AUDIO_CONFIG_DESC_SIZ (unsigned long)(9 + \
AUDIO_AC_DESCRIPTOR_INIT_LEN(2) + \
AUDIO_SIZEOF_AC_INPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_FEATURE_UNIT_DESC(2, 1) + \
AUDIO_SIZEOF_AC_OUTPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_INPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_FEATURE_UNIT_DESC(2, 1) + \
AUDIO_SIZEOF_AC_OUTPUT_TERMINAL_DESC + \
AUDIO_AS_DESCRIPTOR_INIT_LEN(1) + \
AUDIO_AS_FEEDBACK_DESCRIPTOR_INIT_LEN(1))
#endif
#define AUDIO_AC_SIZ (AUDIO_SIZEOF_AC_HEADER_DESC(2) + \
AUDIO_SIZEOF_AC_INPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_FEATURE_UNIT_DESC(2, 1) + \
AUDIO_SIZEOF_AC_OUTPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_INPUT_TERMINAL_DESC + \
AUDIO_SIZEOF_AC_FEATURE_UNIT_DESC(2, 1) + \
AUDIO_SIZEOF_AC_OUTPUT_TERMINAL_DESC)
#ifdef CONFIG_USBDEV_ADVANCE_DESC
static const uint8_t device_descriptor[] = {
USB_DEVICE_DESCRIPTOR_INIT(USB_2_0, 0xef, 0x02, 0x01, USBD_VID, USBD_PID, 0x0001, 0x01)
};
static const uint8_t config_descriptor[] = {
USB_CONFIG_DESCRIPTOR_INIT(USB_AUDIO_CONFIG_DESC_SIZ, 0x03, 0x01, USB_CONFIG_BUS_POWERED, USBD_MAX_POWER),
AUDIO_AC_DESCRIPTOR_INIT(0x00, 0x03, AUDIO_AC_SIZ, 0x00, 0x01, 0x02),
AUDIO_AC_INPUT_TERMINAL_DESCRIPTOR_INIT(0x01, AUDIO_INTERM_MIC, 0x02, 0x0003),
AUDIO_AC_FEATURE_UNIT_DESCRIPTOR_INIT(0x02, 0x01, 0x01, 0x03, 0x00, 0x00),
AUDIO_AC_OUTPUT_TERMINAL_DESCRIPTOR_INIT(0x03, AUDIO_TERMINAL_STREAMING, 0x02),
AUDIO_AC_INPUT_TERMINAL_DESCRIPTOR_INIT(0x04, AUDIO_TERMINAL_STREAMING, 0x02, 0x0003),
AUDIO_AC_FEATURE_UNIT_DESCRIPTOR_INIT(0x05, 0x04, 0x01, 0x03, 0x00, 0x00),
AUDIO_AC_OUTPUT_TERMINAL_DESCRIPTOR_INIT(0x06, AUDIO_OUTTERM_SPEAKER, 0x05),
#if USING_FEEDBACK == 0
AUDIO_AS_DESCRIPTOR_INIT(0x01, 0x04, 0x02, AUDIO_SPEAKER_FRAME_SIZE_BYTE, AUDIO_SPEAKER_RESOLUTION_BIT, AUDIO_OUT_EP, 0x09, AUDIO_OUT_PACKET,
EP_INTERVAL, AUDIO_SAMPLE_FREQ_3B(AUDIO_SPEAKER_FREQ)),
#else
AUDIO_AS_FEEDBACK_DESCRIPTOR_INIT(0x01, 0x04, 0x02, AUDIO_SPEAKER_FRAME_SIZE_BYTE, AUDIO_SPEAKER_RESOLUTION_BIT, AUDIO_OUT_EP, AUDIO_OUT_PACKET,
EP_INTERVAL, AUDIO_OUT_FEEDBACK_EP, AUDIO_SAMPLE_FREQ_3B(AUDIO_SPEAKER_FREQ)),
#endif
AUDIO_AS_DESCRIPTOR_INIT(0x02, 0x03, 0x02, AUDIO_MIC_FRAME_SIZE_BYTE, AUDIO_MIC_RESOLUTION_BIT, AUDIO_IN_EP, 0x05, AUDIO_IN_PACKET,
EP_INTERVAL, AUDIO_SAMPLE_FREQ_3B(AUDIO_MIC_FREQ))
};
static const uint8_t device_quality_descriptor[] = {
///////////////////////////////////////
/// device qualifier descriptor
///////////////////////////////////////
0x0a,
USB_DESCRIPTOR_TYPE_DEVICE_QUALIFIER,
0x00,
0x02,
0x00,
0x00,
0x00,
0x40,
0x00,
0x00,
};
static const char *string_descriptors[] = {
(const char[]){ 0x09, 0x04 }, /* Langid */
"CherryUSB", /* Manufacturer */
"CherryUSB UAC DEMO", /* Product */
"2022123456", /* Serial Number */
};
static const uint8_t *device_descriptor_callback(uint8_t speed)
{
return device_descriptor;
}
static const uint8_t *config_descriptor_callback(uint8_t speed)
{
return config_descriptor;
}
static const uint8_t *device_quality_descriptor_callback(uint8_t speed)
{
return device_quality_descriptor;
}
static const char *string_descriptor_callback(uint8_t speed, uint8_t index)
{
if (index > 3) {
return NULL;
}
return string_descriptors[index];
}
const struct usb_descriptor audio_v1_descriptor = {
.device_descriptor_callback = device_descriptor_callback,
.config_descriptor_callback = config_descriptor_callback,
.device_quality_descriptor_callback = device_quality_descriptor_callback,
.string_descriptor_callback = string_descriptor_callback
};
#else
const uint8_t audio_v1_descriptor[] = {
USB_DEVICE_DESCRIPTOR_INIT(USB_2_0, 0xef, 0x02, 0x01, USBD_VID, USBD_PID, 0x0001, 0x01),
USB_CONFIG_DESCRIPTOR_INIT(USB_AUDIO_CONFIG_DESC_SIZ, 0x03, 0x01, USB_CONFIG_BUS_POWERED, USBD_MAX_POWER),
AUDIO_AC_DESCRIPTOR_INIT(0x00, 0x03, AUDIO_AC_SIZ, 0x00, 0x01, 0x02),
AUDIO_AC_INPUT_TERMINAL_DESCRIPTOR_INIT(0x01, AUDIO_INTERM_MIC, 0x02, 0x0003),
AUDIO_AC_FEATURE_UNIT_DESCRIPTOR_INIT(0x02, 0x01, 0x01, 0x03, 0x00, 0x00),
AUDIO_AC_OUTPUT_TERMINAL_DESCRIPTOR_INIT(0x03, AUDIO_TERMINAL_STREAMING, 0x02),
AUDIO_AC_INPUT_TERMINAL_DESCRIPTOR_INIT(0x04, AUDIO_TERMINAL_STREAMING, 0x02, 0x0003),
AUDIO_AC_FEATURE_UNIT_DESCRIPTOR_INIT(0x05, 0x04, 0x01, 0x03, 0x00, 0x00),
AUDIO_AC_OUTPUT_TERMINAL_DESCRIPTOR_INIT(0x06, AUDIO_OUTTERM_SPEAKER, 0x05),
#if USING_FEEDBACK == 0
AUDIO_AS_DESCRIPTOR_INIT(0x01, 0x04, 0x02, AUDIO_SPEAKER_FRAME_SIZE_BYTE, AUDIO_SPEAKER_RESOLUTION_BIT, AUDIO_OUT_EP, 0x09, AUDIO_OUT_PACKET,
EP_INTERVAL, AUDIO_SAMPLE_FREQ_3B(AUDIO_SPEAKER_FREQ)),
#else
AUDIO_AS_FEEDBACK_DESCRIPTOR_INIT(0x01, 0x04, 0x02, AUDIO_SPEAKER_FRAME_SIZE_BYTE, AUDIO_SPEAKER_RESOLUTION_BIT, AUDIO_OUT_EP, AUDIO_OUT_PACKET,
EP_INTERVAL, AUDIO_OUT_FEEDBACK_EP, AUDIO_SAMPLE_FREQ_3B(AUDIO_SPEAKER_FREQ)),
#endif
AUDIO_AS_DESCRIPTOR_INIT(0x02, 0x03, 0x02, AUDIO_MIC_FRAME_SIZE_BYTE, AUDIO_MIC_RESOLUTION_BIT, AUDIO_IN_EP, 0x05, AUDIO_IN_PACKET,
EP_INTERVAL, AUDIO_SAMPLE_FREQ_3B(AUDIO_MIC_FREQ)),
///////////////////////////////////////
/// string0 descriptor
///////////////////////////////////////
USB_LANGID_INIT(USBD_LANGID_STRING),
///////////////////////////////////////
/// string1 descriptor
///////////////////////////////////////
0x14, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'C', 0x00, /* wcChar0 */
'h', 0x00, /* wcChar1 */
'e', 0x00, /* wcChar2 */
'r', 0x00, /* wcChar3 */
'r', 0x00, /* wcChar4 */
'y', 0x00, /* wcChar5 */
'U', 0x00, /* wcChar6 */
'S', 0x00, /* wcChar7 */
'B', 0x00, /* wcChar8 */
///////////////////////////////////////
/// string2 descriptor
///////////////////////////////////////
0x26, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'C', 0x00, /* wcChar0 */
'h', 0x00, /* wcChar1 */
'e', 0x00, /* wcChar2 */
'r', 0x00, /* wcChar3 */
'r', 0x00, /* wcChar4 */
'y', 0x00, /* wcChar5 */
'U', 0x00, /* wcChar6 */
'S', 0x00, /* wcChar7 */
'B', 0x00, /* wcChar8 */
' ', 0x00, /* wcChar9 */
'U', 0x00, /* wcChar10 */
'A', 0x00, /* wcChar11 */
'C', 0x00, /* wcChar12 */
' ', 0x00, /* wcChar13 */
'D', 0x00, /* wcChar14 */
'E', 0x00, /* wcChar15 */
'M', 0x00, /* wcChar16 */
'O', 0x00, /* wcChar17 */
///////////////////////////////////////
/// string3 descriptor
///////////////////////////////////////
0x16, /* bLength */
USB_DESCRIPTOR_TYPE_STRING, /* bDescriptorType */
'2', 0x00, /* wcChar0 */
'0', 0x00, /* wcChar1 */
'2', 0x00, /* wcChar2 */
'2', 0x00, /* wcChar3 */
'1', 0x00, /* wcChar4 */
'2', 0x00, /* wcChar5 */
'3', 0x00, /* wcChar6 */
'4', 0x00, /* wcChar7 */
'5', 0x00, /* wcChar8 */
#if USING_FEEDBACK == 0
'1', 0x00, /* wcChar9 */
#else
'2', 0x00, /* wcChar9 */
#endif
#ifdef CONFIG_USB_HS
///////////////////////////////////////
/// device qualifier descriptor
///////////////////////////////////////
0x0a,
USB_DESCRIPTOR_TYPE_DEVICE_QUALIFIER,
0x00,
0x02,
0x00,
0x00,
0x00,
0x40,
0x00,
0x00,
#endif
0x00
};
#endif
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t read_buffer[AUDIO_OUT_PACKET];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t write_buffer[AUDIO_IN_PACKET];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t s_speaker_feedback_buffer[4];
volatile bool tx_flag = 0;
volatile bool rx_flag = 0;
volatile bool ep_tx_busy_flag = false;
static void usbd_event_handler(uint8_t busid, uint8_t event)
{
switch (event) {
case USBD_EVENT_RESET:
break;
case USBD_EVENT_CONNECTED:
break;
case USBD_EVENT_DISCONNECTED:
break;
case USBD_EVENT_RESUME:
break;
case USBD_EVENT_SUSPEND:
break;
case USBD_EVENT_CONFIGURED:
break;
case USBD_EVENT_SET_REMOTE_WAKEUP:
break;
case USBD_EVENT_CLR_REMOTE_WAKEUP:
break;
default:
break;
}
}
void usbd_audio_open(uint8_t busid, uint8_t intf)
{
if (intf == 1) {
rx_flag = 1;
/* setup first out ep read transfer */
usbd_ep_start_read(busid, AUDIO_OUT_EP, read_buffer, AUDIO_OUT_PACKET);
uint32_t feedback_value = AUDIO_FREQ_TO_FEEDBACK_FS(AUDIO_SPEAKER_FREQ);
AUDIO_FEEDBACK_TO_BUF_FS(s_speaker_feedback_buffer, feedback_value); /* uac1 can only use 10.14 */
usbd_ep_start_write(busid, AUDIO_OUT_FEEDBACK_EP, s_speaker_feedback_buffer, FEEDBACK_ENDP_PACKET_SIZE);
printf("OPEN1\r\n");
} else {
tx_flag = 1;
ep_tx_busy_flag = false;
printf("OPEN2\r\n");
}
}
void usbd_audio_close(uint8_t busid, uint8_t intf)
{
if (intf == 1) {
rx_flag = 0;
printf("CLOSE1\r\n");
} else {
tx_flag = 0;
ep_tx_busy_flag = false;
printf("CLOSE2\r\n");
}
}
void usbd_audio_out_callback(uint8_t busid, uint8_t ep, uint32_t nbytes)
{
// USB_LOG_RAW("actual out len:%d\r\n", nbytes);
extern rt_mailbox_t dac_mbox;
rt_mb_send(dac_mbox, nbytes);
/* 继续启动下一次 USB 读取 */
// usbd_ep_start_read(busid, AUDIO_OUT_EP, read_buffer, AUDIO_OUT_PACKET);
}
void usbd_audio_in_callback(uint8_t busid, uint8_t ep, uint32_t nbytes)
{
// USB_LOG_RAW("actual in len:%d\r\n", nbytes);
ep_tx_busy_flag = false;
}
#if USING_FEEDBACK == 1
void usbd_audio_iso_out_feedback_callback(uint8_t busid, uint8_t ep, uint32_t nbytes)
{
USB_LOG_RAW("actual feedback len:%d\r\n", nbytes);
uint32_t feedback_value = AUDIO_FREQ_TO_FEEDBACK_FS(AUDIO_SPEAKER_FREQ);
AUDIO_FEEDBACK_TO_BUF_FS(s_speaker_feedback_buffer, feedback_value);
usbd_ep_start_write(busid, AUDIO_OUT_FEEDBACK_EP, s_speaker_feedback_buffer, FEEDBACK_ENDP_PACKET_SIZE);
}
#endif
static struct usbd_endpoint audio_in_ep = {
.ep_cb = usbd_audio_in_callback,
.ep_addr = AUDIO_IN_EP
};
static struct usbd_endpoint audio_out_ep = {
.ep_cb = usbd_audio_out_callback,
.ep_addr = AUDIO_OUT_EP
};
#if USING_FEEDBACK == 1
static struct usbd_endpoint audio_out_feedback_ep = {
.ep_cb = usbd_audio_iso_out_feedback_callback,
.ep_addr = AUDIO_OUT_FEEDBACK_EP
};
#endif
struct usbd_interface intf0;
struct usbd_interface intf1;
struct usbd_interface intf2;
struct audio_entity_info audio_entity_table[] = {
{ .bEntityId = AUDIO_IN_FU_ID,
.bDescriptorSubtype = AUDIO_CONTROL_FEATURE_UNIT,
.ep = AUDIO_IN_EP },
{ .bEntityId = AUDIO_OUT_FU_ID,
.bDescriptorSubtype = AUDIO_CONTROL_FEATURE_UNIT,
.ep = AUDIO_OUT_EP },
};
void audio_v1_init(uint8_t busid, uintptr_t reg_base)
{
#ifdef CONFIG_USBDEV_ADVANCE_DESC
usbd_desc_register(busid, &audio_v1_descriptor);
#else
usbd_desc_register(busid, audio_v1_descriptor);
#endif
usbd_add_interface(busid, usbd_audio_init_intf(busid, &intf0, 0x0100, audio_entity_table, 2));
usbd_add_interface(busid, usbd_audio_init_intf(busid, &intf1, 0x0100, audio_entity_table, 2));
usbd_add_interface(busid, usbd_audio_init_intf(busid, &intf2, 0x0100, audio_entity_table, 2));
usbd_add_endpoint(busid, &audio_in_ep);
usbd_add_endpoint(busid, &audio_out_ep);
#if USING_FEEDBACK == 1
usbd_add_endpoint(busid, &audio_out_feedback_ep);
#endif
usbd_initialize(busid, reg_base, usbd_event_handler);
}