D1 参考
rt-thread官方sdk中,正点原子stm32f429-atk-appollo的board中有audio文件夹,包括了mic/play的程序,wm8978的库文件
因为我们基于stm32h750内置adc+dac设计,所以不需要wm8978.c/h。只需要移植drv_sound.c和drv_mic.c
D2 工程名字和路径
D3 drv_sound.c所作修改简单说明
- 定义了一个正弦波用于测试,注意范围是0-4095
- 定义了一个Nocache buffer for DMA,这个非常重要。我在这里最初没有使用Nocache buffer,折腾了很久,声音异常。
- 这些参数的定义,来自CubeMX裸机例程。因此先把CubMX裸机例程调通,非常重要。
/****************************************************************************
* @brief 与cubeMX硬件初始化相关的变量定义
****************************************************************************/
#define USB_NOCACHE_RAM_SECTION __attribute__((section(".noncacheable")))
#define USB_MEM_ALIGNX __attribute__((aligned(32)))
DAC_HandleTypeDef hdac1;
DMA_HandleTypeDef hdma_dac1_ch2;
TIM_HandleTypeDef htim2;
#define TONE_FREQ (440)
#define SIN_TABLE_SIZE (16000 / TONE_FREQ) /*16kHz/440Hz=36 pts*/
#define M_PI 3.14159265358979323846
uint16_t sin_table[SIN_TABLE_SIZE];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t dac_buffer[TX_DMA_FIFO_SIZE]; // Nocache buffer for DMA, important!
// static void MX_ADC1_Init(void);
static void MX_DAC1_Init(void);
static void MX_TIM2_Init(void);
static void MX_DMA_Init(void);
static void generate_sin_table(void)
{
for (int i = 0; i < SIN_TABLE_SIZE; i++)
{
float angle = 2 * M_PI * i / SIN_TABLE_SIZE;
sin_table[i] = (uint16_t)((sin(angle) + 1.0f) * 2047.5f); // 12-bit DAC, 0-4095 range
}
}
- 播放要实现的几个dev_audio设备驱动框架的几个函数包括:stm32_player_getcaps,stm32_player_configure, stm32_player_init, stm32_player_start, stm32_player_stop, stm32_player_buffer_info
- 只有stm32_player_init, stm32_player_start是必须需要用户要实现的。 stm32_player_buffer_info也是要实现的,不过很简单,基本不用改。
- 如果配置是CubeMX产生的,而且是固定的,那么stm32_player_getcaps,stm32_player_configure可以不用实现,直接返回RET_OK即可。
- 对于本文,因为我们默认配置rt-thread的软件库wavplayer使用,wavplayer定义了AUDIO_TYPE_OUTPUT–>AUDIO_DSP_PARAM参数配置,因此我们在stm32_player_configure中实现了这个操作方法。主要是用来配置采样率。因为不同的音频,采样率不同。
- 另外,因为音频驱动框架默认使用DMA模式,因此需要在传输完成和半传输完成中调用rt_audio_tx_complete,用于申请切换缓冲区
/****************************************************************************
* @brief 要实现的几个dev_audio接口函数
****************************************************************************/
void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac)
{
if (hdac->Instance == DAC1)
{
rt_audio_tx_complete(&_stm32_audio_play.audio);
}
}
void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac)
{
if (hdac->Instance == DAC1)
{
rt_audio_tx_complete(&_stm32_audio_play.audio);
}
}
static rt_err_t stm32_player_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct stm32_audio *st_audio = (struct stm32_audio *)audio->parent.user_data;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
return result;
}
static rt_err_t stm32_player_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct stm32_audio *st_audio = (struct stm32_audio *)audio->parent.user_data;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
switch (caps->main_type)
{
case AUDIO_TYPE_MIXER:
{
switch (caps->sub_type)
{
case AUDIO_MIXER_VOLUME:
{
int volume = caps->udata.value;
st_audio->replay_volume = volume;
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_OUTPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
struct rt_audio_configure config = caps->udata.config;
st_audio->replay_config.samplerate = config.samplerate;
st_audio->replay_config.samplebits = config.samplebits;
st_audio->replay_config.channels = config.channels;
/*只添加调整采样率的功能*/
__HAL_TIM_SET_AUTORELOAD(&htim2, 240000000 / st_audio->replay_config.samplerate - 1);
rt_kprintf("samplerate: %d\n", st_audio->replay_config.samplerate);
rt_kprintf("samplebits: %d\n", st_audio->replay_config.samplebits);
rt_kprintf("channels: %d\n", st_audio->replay_config.channels);
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
default:
break;
}
return result;
}
static rt_err_t stm32_player_init(struct rt_audio_device *audio)
{
MX_DMA_Init();
MX_DAC1_Init();
MX_TIM2_Init();
return RT_EOK;
}
static rt_err_t stm32_player_start(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_REPLAY)
{
HAL_TIM_Base_Start(&htim2);
HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_2, (uint32_t *) _stm32_audio_play.tx_fifo, TX_DMA_FIFO_SIZE / 2, DAC_ALIGN_12B_R);
}
return RT_EOK;
}
static rt_err_t stm32_player_stop(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_REPLAY)
{
HAL_DAC_Stop_DMA(&hdac1, DAC_CHANNEL_2);
HAL_TIM_Base_Stop(&htim2);
}
return RT_EOK;
}
static void stm32_player_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info)
{
/**
* TX_FIFO
* +----------------+----------------+
* | block1 | block2 |
* +----------------+----------------+
* \ block_size /
*/
info->buffer = _stm32_audio_play.tx_fifo;
info->total_size = TX_DMA_FIFO_SIZE;
info->block_size = TX_DMA_FIFO_SIZE / 2;
info->block_count = 2;
}
static struct rt_audio_ops _p_audio_ops =
{
.getcaps = stm32_player_getcaps,
.configure = stm32_player_configure,
.init = stm32_player_init,
.start = stm32_player_start,
.stop = stm32_player_stop,
.transmit = RT_NULL,
.buffer_info = stm32_player_buffer_info,
};
int rt_hw_sound_init(void)
{
rt_uint8_t *tx_fifo;
/* player */
tx_fifo = /*rt_malloc(TX_DMA_FIFO_SIZE)*/ dac_buffer; /*替换为nocache的dac_buffer, 非常重要! 折腾了几个小时!*/
if (tx_fifo == RT_NULL)
{
return -RT_ENOMEM;
}
rt_memset(tx_fifo, 0, TX_DMA_FIFO_SIZE);
_stm32_audio_play.tx_fifo = tx_fifo;
/* register sound device */
_stm32_audio_play.audio.ops = &_p_audio_ops;
rt_audio_register(&_stm32_audio_play.audio, "sound0", RT_DEVICE_FLAG_WRONLY, &_stm32_audio_play);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_sound_init);
- 接下来定义了一个播放线程,用于播放前面定义的sine信号,输出440Hz钢琴标准音。
- 在线程函数play_thread_entry循环体中,只需要调用rt_device_write不停的write即可。这个函数自带阻塞性质,因此不需要额外添加rt_thread_mdelay(也必须不能添加,否则有声音断断续续)
- 通过MSH_CMD_EXPORT导出到msh中执行,方便测试
/****************************************************************************
* @brief 测试播放sin信号线程, 导入到msh
****************************************************************************/
void play_thread_entry(void *parameter)
{
rt_device_t sound_dev;
rt_size_t written;
generate_sin_table();
sound_dev = rt_device_find("sound0");
rt_device_open(sound_dev, RT_DEVICE_OFLAG_WRONLY);
while(1){
written = rt_device_write(sound_dev, 0, sin_table, sizeof(sin_table));
// rt_kprintf("Wrote %d bytes to sound device\n", written);
// rt_thread_mdelay(1);
}
}
void play_sine()
{
rt_thread_t thread;
thread = rt_thread_create("play_thread", play_thread_entry, RT_NULL, 2048, 2, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
}
MSH_CMD_EXPORT(play_sine, play_sine_test);
- 接下来的部分是硬件初始化函数部分。主要包括 CubeMX底层硬件初始化, 包括xx_MSPInit(), xx_Init(), xx_IRQHandler()。
- 直接从CubeMX生成工程拷贝过来的,不再赘述了。这部分的内容,之前已经在rt-thread中经过测试的,是可以正常工作的。
- 注意我们TIM2配置的period频率是16kHz,这是默认值。可以通过stm32_player_configure修改。
D4 drv_mic.c所作修改简单说明
- 定义了一个Nocache buffer for DMA,这个非常重要。我在这里最初没有使用Nocache buffer,折腾了很久,录音声音异常。
- 这些参数的定义,来自CubeMX裸机例程。因此先把CubMX裸机例程调通,非常重要。
/****************************************************************************
* @brief 与cubeMX硬件初始化相关的变量定义
****************************************************************************/
#define USB_NOCACHE_RAM_SECTION __attribute__((section(".noncacheable")))
#define USB_MEM_ALIGNX __attribute__((aligned(32)))
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
extern TIM_HandleTypeDef htim2;
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t adc_buffer[RX_DMA_FIFO_SIZE]; // Nocache buffer for DMA, important!
static void MX_ADC1_Init(void);
static void MX_TIM2_Init(void);
static void MX_DMA_Init(void);
- 录音要实现的几个dev_audio设备驱动框架的几个函数包括:stm32_mic_getcaps,stm32_mic_configure, stm32_mic_init, stm32_mic_start, stm32_mic_stop, stm32_mic_buffer_info
- 只有stm32_mic_init, stm32_mic_start是必须需要用户要实现的。
- 如果配置是CubeMX产生的,而且是固定的,那么stm32_mic_getcaps,stm32_mic_configure可以不用实现,直接返回RET_OK即可。
- 对于本文,因为我们默认配置rt-thread的软件库wavplayer使用,wavplayer定义了AUDIO_TYPE_INPUT–>AUDIO_DSP_PARAM参数配置,因此我们在stm32_mic_configure中实现了这个操作方法。主要是用来配置采样率。
- 另外,因为音频驱动框架默认使用DMA模式,因此需要在传输完成和半传输完成中调用rt_audio_rx_done,用于申请切换缓冲区
/****************************************************************************
* @brief 要实现的几个dev_audio接口函数
****************************************************************************/
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
rt_audio_rx_done(&(_stm32_audio_record.audio), &_stm32_audio_record.rx_fifo[RX_DMA_FIFO_SIZE / 2], RX_DMA_FIFO_SIZE / 2);
}
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
rt_audio_rx_done(&(_stm32_audio_record.audio), &_stm32_audio_record.rx_fifo[0], RX_DMA_FIFO_SIZE / 2);
}
}
static rt_err_t stm32_mic_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
return result;
}
static rt_err_t stm32_mic_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
switch (caps->main_type)
{
case AUDIO_TYPE_INPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
_stm32_audio_record.config.samplerate = caps->udata.config.samplerate;
_stm32_audio_record.config.channels = caps->udata.config.channels;
_stm32_audio_record.config.samplebits = caps->udata.config.samplebits;
/*只添加调整采样率的功能*/
__HAL_TIM_SET_AUTORELOAD(&htim2, 240000000 / _stm32_audio_record.config.samplerate - 1);
rt_kprintf("samplerate: %d\n", _stm32_audio_record.config.samplerate);
rt_kprintf("samplebits: %d\n", _stm32_audio_record.config.samplebits);
rt_kprintf("channels: %d\n", _stm32_audio_record.config.channels);
break;
}
default:
result = -RT_ERROR;
break;
}
/* After set config, MCLK will stop */
break;
}
default:
break;
}
return result;
}
static rt_err_t stm32_mic_init(struct rt_audio_device *audio)
{
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM2_Init();
return RT_EOK;
}
static rt_err_t stm32_mic_start(struct rt_audio_device *audio, int stream)
{
rt_err_t result = RT_EOK;
if (stream == AUDIO_STREAM_RECORD)
{
HAL_TIM_Base_Start(&htim2);
HAL_ADC_Start_DMA(&hadc1, (uint32_t *) _stm32_audio_record.rx_fifo, RX_DMA_FIFO_SIZE/2);
}
return result;
}
static rt_err_t stm32_mic_stop(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_RECORD)
{
HAL_ADC_Stop_DMA(&hadc1);
HAL_TIM_Base_Stop(&htim2);
}
return RT_EOK;
}
static struct rt_audio_ops _mic_audio_ops =
{
.getcaps = stm32_mic_getcaps,
.configure = stm32_mic_configure,
.init = stm32_mic_init,
.start = stm32_mic_start,
.stop = stm32_mic_stop,
.transmit = RT_NULL,
.buffer_info = RT_NULL,
};
int rt_hw_mic_init(void)
{
struct rt_audio_device *audio = &_stm32_audio_record.audio;
/* mic default */
_stm32_audio_record.rx_fifo = /*rt_calloc(1, RX_DMA_FIFO_SIZE)*/ adc_buffer; /*替换为nocache的adc_buffer, 非常重要! 折腾了几个小时!*/
if (_stm32_audio_record.rx_fifo == RT_NULL)
{
return -RT_ENOMEM;
}
_stm32_audio_record.config.channels = 1;
_stm32_audio_record.config.samplerate = 16000;
_stm32_audio_record.config.samplebits = 16;
/* register mic device */
audio->ops = &_mic_audio_ops;
rt_audio_register(audio, "mic0", RT_DEVICE_FLAG_RDONLY, &_stm32_audio_record);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_mic_init);
- 我们没有定义录音线程。我们直接使用wavplayer进行录音测试。
- 接下来的部分是硬件初始化函数部分。主要包括 CubeMX底层硬件初始化, 包括xx_MSPInit(), xx_Init(), xx_IRQHandler()。
- 直接从CubeMX生成工程拷贝过来的,不再赘述了。这部分的内容,之前已经在rt-thread中经过测试的,是可以正常工作的。
- 注意我们TIM2配置的period频率是16kHz,这是默认值。可以通过stm32_mic_configure修改。
- 注意TIM2的MSPInit()函数,定义在drv_sound.c中,因为2个音频设备都使用了TIM2, 这个函数是全局的,只能定义在一个地方。
D5 Menuconfig配置
需要开启rt-thread的audio设备
需要开启rt-thread的online多媒体插件wavplayer
wavplayer默认开启了播放。录音需要开启, 并设置设备名字为"mic0"
还需要勾选cherryusb设备msc class, 因为我们要用ramdisk作为msc设备。便于从pc上拷贝wav文件到ramdisk。
D6 程序在工程中的位置
D7 cherryusb_msc开启
E:\Share\rt-thread\bsp\stm32\my_boards\my_stm32_boards\h750_artpi\board\port2\msc_blkdev_template.c
// #define BLOCK_DEVICE_NAME "W25Q64S"
#define BLOCK_DEVICE_NAME "ramdisk0"
// #define BLOCK_DEVICE_NAME "sd0"
D8 wavplayer的修改
- wavplayer_cmd.c的bug修改, wavplay_args_prase函数中调用optparse_init()函数少了一个参数argc
/* Parse cmd */
optparse_init(&options, argc, argv);
- wavrecorder_cmd.c的bug修改, wavrecord_args_prase函数中调用optparse_init()函数少了一个参数argc
/* Parse cmd */
optparse_init(&options, argc, argv);
- wavplayer.c中wavplayer_entry函数修改, 因为要适配DAC需要使用12bits unsigned int,wav原始数据是16bits signed,需要转换。
case PLAYER_EVENT_NONE:
{
/* read raw data from file stream */
size = fread(player.buffer, WP_BUFFER_SIZE, 1, player.fp);
if (size != 1)
{
/* FILE END*/
player.state = PLAYER_STATE_STOPED;
}
else
{
int16_t *p = (int16_t *)player.buffer;
for(int i=0; i < WP_BUFFER_SIZE/2; i++){ /*Add by xujc, for 12bits DAC play*/
p[i] += 32768;
p[i] >>= 4;
}
/*witte data to sound device*/
rt_device_write(player.device, 0, player.buffer, WP_BUFFER_SIZE);
}
break;
}
- wavrecorder.c中wavrecord_entry函数修改, 因为要适配ADC需要使用16bits unsigned,wav原始数据是16bits signed,需要转换。
/* read raw data from sound device */
size = rt_device_read(record.device, 0, record.buffer, WR_BUFFER_SIZE);
if (size)
{
int16_t *buffer = (int16_t *)record.buffer;
for(int i = 0; i < size/2; i++) {
buffer[i] = (int16_t)(((uint16_t *)record.buffer)[i] - 32768);
}
fwrite(record.buffer, size, 1, record.fp);
total_length += size;
}
D9 测试
- play_sine测试ok
msh />help
RT-Thread shell commands:
play_sine - play_sine_test
sdram_test - sdram test
reboot - Reboot System
ramdisk - create ramdisk device.
wavplay - play wav music
wavrecord - record wav music
usbh_init - init usb host
usbh_deinit - deinit usb host
lsusb - ls usb devices
fal - FAL (Flash Abstraction Layer) operate.
list_blk - dump all of blks information
adc - adc [option]
dac - dac function
pin - pin [option]
sf - SPI Flash operate.
clear - clear the terminal screen
version - show RT-Thread version information
list - list objects
help - RT-Thread shell help
ps - List threads in the system
free - Show the memory usage in the system
ls - List information about the FILEs.
cp - Copy SOURCE to DEST.
mv - Rename SOURCE to DEST.
cat - Concatenate FILE(s)
rm - Remove(unlink) the FILE(s).
cd - Change the shell working directory.
pwd - Print the name of the current working directory.
mkdir - Create the DIRECTORY.
mkfs - format disk with file system
mount - mount <device> <mountpoint> <fstype>
umount - Unmount the mountpoint
df - disk free
echo - echo string to file
tail - print the last N - lines data of the given file
backtrace - print backtrace of a thread
msh />play_sine
播放wavplayer自带的3个example wav文件(这个非常不错,自带wav,省得去找)
将3个wav文件拷贝到ramdisk msc u盘中
用wavplay命令来播放wav文件,效果非常不错。
msh />ls ramdisk
Directory ramdisk:
System Volume Inform<DIR>
sample3.wav 1411248
sample1.wav 497904
sample2.wav 705644
msh />wavplay -h
usage: wavplay [option] [target] ...
usage options:
-h, --help Print defined help message.
-s URI, --start=URI Play wav music with URI(local files).
-t, --stop Stop playing music.
-p, --pause Pause the music.
-r, --resume Resume the music.
-v lvl, --volume=lvl Change the volume(0~99).
-d, --dump Dump play relevant information.
msh />wavplay -s ramdisk/sample1.wav
samplerate: 44100
samplebits: 16
channels: 2
[I/WAV_PLAYER] play start, uri=ramdisk/sample1.wav
msh />[I/WAV_PLAYER] play end
msh />wavplay -s ramdisk/sample2.wav
samplerate: 44100
samplebits: 16
channels: 2
[I/WAV_PLAYER] play start, uri=ramdisk/sample2.wav
msh />[I/WAV_PLAYER] play end
msh />wavplay -s ramdisk/sample3.wav
samplerate: 44100
samplebits: 16
channels: 2
[I/WAV_PLAYER] play start, uri=ramdisk/sample3.wav
msh />[I/WAV_PLAYER] play end
- 录音和播放测试
- 我说一段话,然后用wavrecord录音,以16kHz录音,录音文件保存在ramdisk中
- 用wavplay命令来播放录音文件,效果非常不错。
msh />wavrecord
usage: wavrecord [option] [target] ...
usage options:
-h, --help Print defined help message.
-s file --start=file <samplerate> <channels> <samplebits>
record wav music to filesystem.
-t, --stop Stop record.
msh />wavrecord -s ramdisk/my.wav 16000 1 16
Information:
samplerate 16000
channels 1
samplerate: 16000
samplebits: 16
channels: 1
msh />wavrecord -t
msh />ls ramdisk
Directory ramdisk:
System Volume Inform<DIR>
sample3.wav 1411248
sample1.wav 497904
sample2.wav 705644
my.wav 311340
msh />wavplay -s ramdisk/my.wav
samplerate: 16000
samplebits: 16
channels: 1
[I/WAV_PLAYER] play start, uri=ramdisk/my.wav
msh />[I/WAV_PLAYER] play end
- 电脑打开抖音,播放一段仙剑奇侠传主题曲《此生不换》
- 开启wavrecord录音, 这次以44100采样率录制,音质较高, 录音时间较长,文件较大
- 用wavplay命令来播放录音文件,效果非常不错。
msh />wavrecord -s ramdisk/my2.wav 44100 1 16
Information:
samplerate 44100
channels 1
samplerate: 44100
samplebits: 16
channels: 1
msh />wavrecord -t
msh />ls ramdisk
Directory ramdisk:
System Volume Inform<DIR>
sample3.wav 1411248
sample1.wav 497904
sample2.wav 705644
my.wav 311340
my2.wav 5419008
msh />wavplay -s ramdisk/my2.wav
samplerate: 44100
samplebits: 16
channels: 1
[I/WAV_PLAYER] play start, uri=ramdisk/my2.wav
D10 附录1:drv_sound.c
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-28 Ernest the first version
*/
#include "board.h"
#include "drv_sound.h"
#define DBG_TAG "drv.sound"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define TX_DMA_FIFO_SIZE (2048)
struct stm32_audio
{
struct rt_audio_device audio;
struct rt_audio_configure replay_config;
int replay_volume;
rt_uint8_t *tx_fifo;
rt_bool_t startup;
};
struct stm32_audio _stm32_audio_play = {0};
/****************************************************************************
* @brief 与cubeMX硬件初始化相关的变量定义
****************************************************************************/
#define USB_NOCACHE_RAM_SECTION __attribute__((section(".noncacheable")))
#define USB_MEM_ALIGNX __attribute__((aligned(32)))
DAC_HandleTypeDef hdac1;
DMA_HandleTypeDef hdma_dac1_ch2;
TIM_HandleTypeDef htim2;
#define TONE_FREQ (440)
#define SIN_TABLE_SIZE (16000 / TONE_FREQ) /*16kHz/440Hz=36 pts*/
#define M_PI 3.14159265358979323846
uint16_t sin_table[SIN_TABLE_SIZE];
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t dac_buffer[TX_DMA_FIFO_SIZE]; // Nocache buffer for DMA, important!
// static void MX_ADC1_Init(void);
static void MX_DAC1_Init(void);
static void MX_TIM2_Init(void);
static void MX_DMA_Init(void);
static void generate_sin_table(void)
{
for (int i = 0; i < SIN_TABLE_SIZE; i++)
{
float angle = 2 * M_PI * i / SIN_TABLE_SIZE;
sin_table[i] = (uint16_t)((sin(angle) + 1.0f) * 2047.5f); // 12-bit DAC, 0-4095 range
}
}
/****************************************************************************
* @brief 要实现的几个dev_audio接口函数
****************************************************************************/
void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac)
{
if (hdac->Instance == DAC1)
{
rt_audio_tx_complete(&_stm32_audio_play.audio);
}
}
void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac)
{
if (hdac->Instance == DAC1)
{
rt_audio_tx_complete(&_stm32_audio_play.audio);
}
}
static rt_err_t stm32_player_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct stm32_audio *st_audio = (struct stm32_audio *)audio->parent.user_data;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
return result;
}
static rt_err_t stm32_player_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
struct stm32_audio *st_audio = (struct stm32_audio *)audio->parent.user_data;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
switch (caps->main_type)
{
case AUDIO_TYPE_MIXER:
{
switch (caps->sub_type)
{
case AUDIO_MIXER_VOLUME:
{
int volume = caps->udata.value;
st_audio->replay_volume = volume;
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
case AUDIO_TYPE_OUTPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
struct rt_audio_configure config = caps->udata.config;
st_audio->replay_config.samplerate = config.samplerate;
st_audio->replay_config.samplebits = config.samplebits;
st_audio->replay_config.channels = config.channels;
/*只添加调整采样率的功能*/
__HAL_TIM_SET_AUTORELOAD(&htim2, 240000000 / st_audio->replay_config.samplerate - 1);
rt_kprintf("samplerate: %d\n", st_audio->replay_config.samplerate);
rt_kprintf("samplebits: %d\n", st_audio->replay_config.samplebits);
rt_kprintf("channels: %d\n", st_audio->replay_config.channels);
break;
}
default:
result = -RT_ERROR;
break;
}
break;
}
default:
break;
}
return result;
}
static rt_err_t stm32_player_init(struct rt_audio_device *audio)
{
MX_DMA_Init();
MX_DAC1_Init();
MX_TIM2_Init();
return RT_EOK;
}
static rt_err_t stm32_player_start(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_REPLAY)
{
HAL_TIM_Base_Start(&htim2);
HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_2, (uint32_t *) _stm32_audio_play.tx_fifo, TX_DMA_FIFO_SIZE / 2, DAC_ALIGN_12B_R);
}
return RT_EOK;
}
static rt_err_t stm32_player_stop(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_REPLAY)
{
HAL_DAC_Stop_DMA(&hdac1, DAC_CHANNEL_2);
HAL_TIM_Base_Stop(&htim2);
}
return RT_EOK;
}
static void stm32_player_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info)
{
/**
* TX_FIFO
* +----------------+----------------+
* | block1 | block2 |
* +----------------+----------------+
* \ block_size /
*/
info->buffer = _stm32_audio_play.tx_fifo;
info->total_size = TX_DMA_FIFO_SIZE;
info->block_size = TX_DMA_FIFO_SIZE / 2;
info->block_count = 2;
}
static struct rt_audio_ops _p_audio_ops =
{
.getcaps = stm32_player_getcaps,
.configure = stm32_player_configure,
.init = stm32_player_init,
.start = stm32_player_start,
.stop = stm32_player_stop,
.transmit = RT_NULL,
.buffer_info = stm32_player_buffer_info,
};
int rt_hw_sound_init(void)
{
rt_uint8_t *tx_fifo;
/* player */
tx_fifo = /*rt_malloc(TX_DMA_FIFO_SIZE)*/ dac_buffer; /*替换为nocache的dac_buffer, 非常重要! 折腾了几个小时!*/
if (tx_fifo == RT_NULL)
{
return -RT_ENOMEM;
}
rt_memset(tx_fifo, 0, TX_DMA_FIFO_SIZE);
_stm32_audio_play.tx_fifo = tx_fifo;
/* register sound device */
_stm32_audio_play.audio.ops = &_p_audio_ops;
rt_audio_register(&_stm32_audio_play.audio, "sound0", RT_DEVICE_FLAG_WRONLY, &_stm32_audio_play);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_sound_init);
/****************************************************************************
* @brief 测试播放sin信号线程, 导入到msh
****************************************************************************/
void play_thread_entry(void *parameter)
{
rt_device_t sound_dev;
rt_size_t written;
generate_sin_table();
sound_dev = rt_device_find("sound0");
rt_device_open(sound_dev, RT_DEVICE_OFLAG_WRONLY);
while(1){
written = rt_device_write(sound_dev, 0, sin_table, sizeof(sin_table));
// rt_kprintf("Wrote %d bytes to sound device\n", written);
// rt_thread_mdelay(1);
}
}
void play_sine()
{
rt_thread_t thread;
thread = rt_thread_create("play_thread", play_thread_entry, RT_NULL, 2048, 2, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
}
MSH_CMD_EXPORT(play_sine, play_sine_test);
/****************************************************************************
* @brief CubeMX底层硬件初始化, 包括xx_MSPInit(), xx_Init(), xx_IRQHandler()
****************************************************************************/
/**
* @brief DAC MSP Initialization
* This function configures the hardware resources used in this example
* @param hdac: DAC handle pointer
* @retval None
*/
void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(hdac->Instance==DAC1)
{
/* USER CODE BEGIN DAC1_MspInit 0 */
/* USER CODE END DAC1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_DAC12_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**DAC1 GPIO Configuration
PA5 ------> DAC1_OUT2
*/
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* DAC1 DMA Init */
/* DAC1_CH2 Init */
hdma_dac1_ch2.Instance = DMA1_Stream1;
hdma_dac1_ch2.Init.Request = DMA_REQUEST_DAC2;
hdma_dac1_ch2.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_dac1_ch2.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_dac1_ch2.Init.MemInc = DMA_MINC_ENABLE;
hdma_dac1_ch2.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_dac1_ch2.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_dac1_ch2.Init.Mode = DMA_CIRCULAR;
hdma_dac1_ch2.Init.Priority = DMA_PRIORITY_LOW;
hdma_dac1_ch2.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_dac1_ch2.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL;
hdma_dac1_ch2.Init.MemBurst = DMA_MBURST_INC4;
hdma_dac1_ch2.Init.PeriphBurst = DMA_PBURST_SINGLE;
if (HAL_DMA_Init(&hdma_dac1_ch2) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(hdac,DMA_Handle2,hdma_dac1_ch2);
/* USER CODE BEGIN DAC1_MspInit 1 */
/* USER CODE END DAC1_MspInit 1 */
}
}
/**
* @brief DAC MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hdac: DAC handle pointer
* @retval None
*/
void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac)
{
if(hdac->Instance==DAC1)
{
/* USER CODE BEGIN DAC1_MspDeInit 0 */
/* USER CODE END DAC1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_DAC12_CLK_DISABLE();
/**DAC1 GPIO Configuration
PA5 ------> DAC1_OUT2
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5);
/* DAC1 DMA DeInit */
HAL_DMA_DeInit(hdac->DMA_Handle2);
/* USER CODE BEGIN DAC1_MspDeInit 1 */
/* USER CODE END DAC1_MspDeInit 1 */
}
}
/**
* @brief TIM_Base MSP Initialization
* This function configures the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspInit 0 */
/* USER CODE END TIM2_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_TIM2_CLK_ENABLE();
/* USER CODE BEGIN TIM2_MspInit 1 */
/* USER CODE END TIM2_MspInit 1 */
}
}
/**
* @brief TIM_Base MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param htim_base: TIM_Base handle pointer
* @retval None
*/
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
{
if(htim_base->Instance==TIM2)
{
/* USER CODE BEGIN TIM2_MspDeInit 0 */
/* USER CODE END TIM2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM2_CLK_DISABLE();
/* USER CODE BEGIN TIM2_MspDeInit 1 */
/* USER CODE END TIM2_MspDeInit 1 */
}
}
/**
* @brief DAC1 Initialization Function
* @param None
* @retval None
*/
static void MX_DAC1_Init(void)
{
/* USER CODE BEGIN DAC1_Init 0 */
/* USER CODE END DAC1_Init 0 */
DAC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN DAC1_Init 1 */
/* USER CODE END DAC1_Init 1 */
/** DAC Initialization
*/
hdac1.Instance = DAC1;
if (HAL_DAC_Init(&hdac1) != HAL_OK)
{
Error_Handler();
}
/** DAC channel OUT2 config
*/
sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
sConfig.DAC_Trigger = DAC_TRIGGER_T2_TRGO;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE;
sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DAC1_Init 2 */
/* USER CODE END DAC1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 240e6/16e3;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief This function handles DMA1 stream1 global interrupt.
*/
void DMA1_Stream1_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Stream1_IRQn 0 */
/* USER CODE END DMA1_Stream1_IRQn 0 */
rt_base_t level = rt_hw_interrupt_disable();
HAL_DMA_IRQHandler(&hdma_dac1_ch2);
rt_hw_interrupt_enable(level);
/* USER CODE BEGIN DMA1_Stream1_IRQn 1 */
/* USER CODE END DMA1_Stream1_IRQn 1 */
}
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn);
}
D11 附录1:drv_mic.c
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-07-28 Ernest the first version
*/
#include "board.h"
#include "drv_mic.h"
#define DBG_TAG "drv.mic"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define RX_DMA_FIFO_SIZE (2048)
struct stm32_mic
{
struct rt_audio_device audio;
struct rt_audio_configure config;
rt_uint8_t *rx_fifo;
rt_bool_t startup;
};
static struct stm32_mic _stm32_audio_record = {0};
/****************************************************************************
* @brief 与cubeMX硬件初始化相关的变量定义
****************************************************************************/
#define USB_NOCACHE_RAM_SECTION __attribute__((section(".noncacheable")))
#define USB_MEM_ALIGNX __attribute__((aligned(32)))
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
extern TIM_HandleTypeDef htim2;
USB_NOCACHE_RAM_SECTION USB_MEM_ALIGNX uint8_t adc_buffer[RX_DMA_FIFO_SIZE]; // Nocache buffer for DMA, important!
static void MX_ADC1_Init(void);
static void MX_TIM2_Init(void);
static void MX_DMA_Init(void);
/****************************************************************************
* @brief 要实现的几个dev_audio接口函数
****************************************************************************/
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
rt_audio_rx_done(&(_stm32_audio_record.audio), &_stm32_audio_record.rx_fifo[RX_DMA_FIFO_SIZE / 2], RX_DMA_FIFO_SIZE / 2);
}
}
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
if (hadc->Instance == ADC1)
{
rt_audio_rx_done(&(_stm32_audio_record.audio), &_stm32_audio_record.rx_fifo[0], RX_DMA_FIFO_SIZE / 2);
}
}
static rt_err_t stm32_mic_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
return result;
}
static rt_err_t stm32_mic_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps)
{
rt_err_t result = RT_EOK;
LOG_D("%s:main_type: %d, sub_type: %d", __FUNCTION__, caps->main_type, caps->sub_type);
switch (caps->main_type)
{
case AUDIO_TYPE_INPUT:
{
switch (caps->sub_type)
{
case AUDIO_DSP_PARAM:
{
_stm32_audio_record.config.samplerate = caps->udata.config.samplerate;
_stm32_audio_record.config.channels = caps->udata.config.channels;
_stm32_audio_record.config.samplebits = caps->udata.config.samplebits;
/*只添加调整采样率的功能*/
__HAL_TIM_SET_AUTORELOAD(&htim2, 240000000 / _stm32_audio_record.config.samplerate - 1);
rt_kprintf("samplerate: %d\n", _stm32_audio_record.config.samplerate);
rt_kprintf("samplebits: %d\n", _stm32_audio_record.config.samplebits);
rt_kprintf("channels: %d\n", _stm32_audio_record.config.channels);
break;
}
default:
result = -RT_ERROR;
break;
}
/* After set config, MCLK will stop */
break;
}
default:
break;
}
return result;
}
static rt_err_t stm32_mic_init(struct rt_audio_device *audio)
{
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM2_Init();
return RT_EOK;
}
static rt_err_t stm32_mic_start(struct rt_audio_device *audio, int stream)
{
rt_err_t result = RT_EOK;
if (stream == AUDIO_STREAM_RECORD)
{
HAL_TIM_Base_Start(&htim2);
HAL_ADC_Start_DMA(&hadc1, (uint32_t *) _stm32_audio_record.rx_fifo, RX_DMA_FIFO_SIZE/2);
}
return result;
}
static rt_err_t stm32_mic_stop(struct rt_audio_device *audio, int stream)
{
if (stream == AUDIO_STREAM_RECORD)
{
HAL_ADC_Stop_DMA(&hadc1);
HAL_TIM_Base_Stop(&htim2);
}
return RT_EOK;
}
static struct rt_audio_ops _mic_audio_ops =
{
.getcaps = stm32_mic_getcaps,
.configure = stm32_mic_configure,
.init = stm32_mic_init,
.start = stm32_mic_start,
.stop = stm32_mic_stop,
.transmit = RT_NULL,
.buffer_info = RT_NULL,
};
int rt_hw_mic_init(void)
{
struct rt_audio_device *audio = &_stm32_audio_record.audio;
/* mic default */
_stm32_audio_record.rx_fifo = /*rt_calloc(1, RX_DMA_FIFO_SIZE)*/ adc_buffer; /*替换为nocache的adc_buffer, 非常重要! 折腾了几个小时!*/
if (_stm32_audio_record.rx_fifo == RT_NULL)
{
return -RT_ENOMEM;
}
_stm32_audio_record.config.channels = 1;
_stm32_audio_record.config.samplerate = 16000;
_stm32_audio_record.config.samplebits = 16;
/* register mic device */
audio->ops = &_mic_audio_ops;
rt_audio_register(audio, "mic0", RT_DEVICE_FLAG_RDONLY, &_stm32_audio_record);
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_mic_init);
/****************************************************************************
* @brief 录音测试线程, 这里没有实现, 直接用wavplayer库进行测试
****************************************************************************/
/****************************************************************************
* @brief CubeMX底层硬件初始化, 包括xx_MSPInit(), xx_Init(), xx_IRQHandler()
****************************************************************************/
/**
* @brief ADC MSP Initialization
* This function configures the hardware resources used in this example
* @param hadc: ADC handle pointer
* @retval None
*/
void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
if(hadc->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspInit 0 */
/* USER CODE END ADC1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_ADC12_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**ADC1 GPIO Configuration
PA1_C ------> ADC1_INP1
*/
HAL_SYSCFG_AnalogSwitchConfig(SYSCFG_SWITCH_PA1, SYSCFG_SWITCH_PA1_OPEN);
/* ADC1 DMA Init */
/* ADC1 Init */
hdma_adc1.Instance = DMA1_Stream0;
hdma_adc1.Init.Request = DMA_REQUEST_ADC1;
hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
hdma_adc1.Init.Mode = DMA_CIRCULAR;
hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_adc1.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL;
hdma_adc1.Init.MemBurst = DMA_MBURST_SINGLE;
hdma_adc1.Init.PeriphBurst = DMA_PBURST_INC4;
if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
{
Error_Handler();
}
__HAL_LINKDMA(hadc,DMA_Handle,hdma_adc1);
/* ADC1 interrupt Init */
HAL_NVIC_SetPriority(ADC_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(ADC_IRQn);
/* USER CODE BEGIN ADC1_MspInit 1 */
/* USER CODE END ADC1_MspInit 1 */
}
}
/**
* @brief ADC MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hadc: ADC handle pointer
* @retval None
*/
void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
{
if(hadc->Instance==ADC1)
{
/* USER CODE BEGIN ADC1_MspDeInit 0 */
/* USER CODE END ADC1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_ADC12_CLK_DISABLE();
/* ADC1 DMA DeInit */
HAL_DMA_DeInit(hadc->DMA_Handle);
/* ADC1 interrupt DeInit */
HAL_NVIC_DisableIRQ(ADC_IRQn);
/* USER CODE BEGIN ADC1_MspDeInit 1 */
/* USER CODE END ADC1_MspDeInit 1 */
}
}
// /**
// * @brief TIM_Base MSP Initialization
// * This function configures the hardware resources used in this example
// * @param htim_base: TIM_Base handle pointer
// * @retval None
// */
// void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
// {
// if(htim_base->Instance==TIM2)
// {
// /* USER CODE BEGIN TIM2_MspInit 0 */
// /* USER CODE END TIM2_MspInit 0 */
// /* Peripheral clock enable */
// __HAL_RCC_TIM2_CLK_ENABLE();
// /* USER CODE BEGIN TIM2_MspInit 1 */
// /* USER CODE END TIM2_MspInit 1 */
// }
// }
// /**
// * @brief TIM_Base MSP De-Initialization
// * This function freeze the hardware resources used in this example
// * @param htim_base: TIM_Base handle pointer
// * @retval None
// */
// void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
// {
// if(htim_base->Instance==TIM2)
// {
// /* USER CODE BEGIN TIM2_MspDeInit 0 */
// /* USER CODE END TIM2_MspDeInit 0 */
// /* Peripheral clock disable */
// __HAL_RCC_TIM2_CLK_DISABLE();
// /* USER CODE BEGIN TIM2_MspDeInit 1 */
// /* USER CODE END TIM2_MspDeInit 1 */
// }
// }
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_MultiModeTypeDef multimode = {0};
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_16B;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T2_TRGO;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DMA_CIRCULAR;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
hadc1.Init.OversamplingMode = DISABLE;
hadc1.Init.Oversampling.Ratio = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure the ADC multi-mode
*/
multimode.Mode = ADC_MODE_INDEPENDENT;
if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_8CYCLES_5;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
sConfig.OffsetSignedSaturation = DISABLE;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 240e6/16e3;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief This function handles DMA1 stream0 global interrupt.
*/
void DMA1_Stream0_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Stream0_IRQn 0 */
/* USER CODE END DMA1_Stream0_IRQn 0 */
rt_base_t level = rt_hw_interrupt_disable();
HAL_DMA_IRQHandler(&hdma_adc1);
rt_hw_interrupt_enable(level);
/* USER CODE BEGIN DMA1_Stream0_IRQn 1 */
/* USER CODE END DMA1_Stream0_IRQn 1 */
}
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn);
}
D12 附录3:wavplayer.c(我们做了一点修改适配)
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Date Author Notes
* 2019-07-15 Zero-Free first implementation
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <wavhdr.h>
#include <wavplayer.h>
#define DBG_TAG "WAV_PLAYER"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define VOLUME_MIN (0)
#define VOLUME_MAX (99)
#define WP_BUFFER_SIZE (2048)
#define WP_VOLUME_DEFAULT (55)
#define WP_MSG_SIZE (10)
#define WP_THREAD_STATCK_SIZE (2048)
#define WP_THREAD_PRIORITY (15)
enum MSG_TYPE
{
MSG_NONE = 0,
MSG_START = 1,
MSG_STOP = 2,
MSG_PAUSE = 3,
MSG_RESUME = 4,
};
enum PLAYER_EVENT
{
PLAYER_EVENT_NONE = 0,
PLAYER_EVENT_PLAY = 1,
PLAYER_EVENT_STOP = 2,
PLAYER_EVENT_PAUSE = 3,
PLAYER_EVENT_RESUME = 4,
};
struct play_msg
{
int type;
void *data;
};
struct wavplayer
{
int state;
char *uri;
char *buffer;
rt_device_t device;
rt_mq_t mq;
rt_mutex_t lock;
struct rt_completion ack;
FILE *fp;
int volume;
};
static struct wavplayer player;
#if (DBG_LEVEL >= DBG_LOG)
static const char *state_str[] =
{
"STOPPED",
"PLAYING",
"PAUSED",
};
static const char *event_str[] =
{
"NONE",
"PLAY"
"STOP"
"PAUSE"
"RESUME"
};
#endif
static void play_lock(void)
{
rt_mutex_take(player.lock, RT_WAITING_FOREVER);
}
static void play_unlock(void)
{
rt_mutex_release(player.lock);
}
static rt_err_t play_msg_send(struct wavplayer *player, int type, void *data)
{
struct play_msg msg;
msg.type = type;
msg.data = data;
return rt_mq_send(player->mq, &msg, sizeof(struct play_msg));
}
int wavplayer_play(char *uri)
{
rt_err_t result = RT_EOK;
rt_completion_init(&player.ack);
play_lock();
if (player.state != PLAYER_STATE_STOPED)
{
wavplayer_stop();
}
if (player.uri)
{
rt_free(player.uri);
}
player.uri = rt_strdup(uri);
result = play_msg_send(&player, MSG_START, RT_NULL);
rt_completion_wait(&player.ack, RT_WAITING_FOREVER);
play_unlock();
return result;
}
int wavplayer_stop(void)
{
rt_err_t result = RT_EOK;
rt_completion_init(&player.ack);
play_lock();
if (player.state != PLAYER_STATE_STOPED)
{
result = play_msg_send(&player, MSG_STOP, RT_NULL);
rt_completion_wait(&player.ack, RT_WAITING_FOREVER);
}
play_unlock();
return result;
}
int wavplayer_pause(void)
{
rt_err_t result = RT_EOK;
rt_completion_init(&player.ack);
play_lock();
if (player.state == PLAYER_STATE_PLAYING)
{
result = play_msg_send(&player, MSG_PAUSE, RT_NULL);
rt_completion_wait(&player.ack, RT_WAITING_FOREVER);
}
play_unlock();
return result;
}
int wavplayer_resume(void)
{
rt_err_t result = RT_EOK;
rt_completion_init(&player.ack);
play_lock();
if (player.state == PLAYER_STATE_PAUSED)
{
result = play_msg_send(&player, MSG_RESUME, RT_NULL);
rt_completion_wait(&player.ack, RT_WAITING_FOREVER);
}
play_unlock();
return result;
}
int wavplayer_volume_set(int volume)
{
struct rt_audio_caps caps;
if (volume < VOLUME_MIN)
volume = VOLUME_MIN;
else if (volume > VOLUME_MAX)
volume = VOLUME_MAX;
player.device = rt_device_find(PKG_WP_PLAY_DEVICE);
if (player.device == RT_NULL)
return -RT_ERROR;
player.volume = volume;
caps.main_type = AUDIO_TYPE_MIXER;
caps.sub_type = AUDIO_MIXER_VOLUME;
caps.udata.value = volume;
LOG_D("set volume = %d", volume);
return rt_device_control(player.device, AUDIO_CTL_CONFIGURE, &caps);
}
int wavplayer_volume_get(void)
{
return player.volume;
}
int wavplayer_state_get(void)
{
return player.state;
}
char *wavplayer_uri_get(void)
{
return player.uri;
}
static rt_err_t wavplayer_open(struct wavplayer *player)
{
rt_err_t result = RT_EOK;
struct rt_audio_caps caps;
struct wav_header wav;
/* find device */
player->device = rt_device_find(PKG_WP_PLAY_DEVICE);
if (player->device == RT_NULL)
{
LOG_E("device %s not find", PKG_WP_PLAY_DEVICE);
return - RT_ERROR;
}
/* open file */
player->fp = fopen(player->uri, "rb");
if (player->fp == RT_NULL)
{
LOG_E("open file %s failed", player->uri);
result = -RT_ERROR;
goto __exit;
}
/* open sound device */
result = rt_device_open(player->device, RT_DEVICE_OFLAG_WRONLY);
if (result != RT_EOK)
{
LOG_E("open %s device faield", PKG_WP_PLAY_DEVICE);
goto __exit;
}
LOG_D("open wavplayer, device %s", PKG_WP_PLAY_DEVICE);
/* read wavfile header information from file */
wavheader_read(&wav, player->fp);
LOG_D("Information:");
LOG_D("samplerate %d", wav.fmt_sample_rate);
LOG_D("channels %d", wav.fmt_channels);
LOG_D("sample bits width %d", wav.fmt_bit_per_sample);
/* set sampletate,channels, samplebits */
caps.main_type = AUDIO_TYPE_OUTPUT;
caps.sub_type = AUDIO_DSP_PARAM;
caps.udata.config.samplerate = wav.fmt_sample_rate;
caps.udata.config.channels = wav.fmt_channels;
caps.udata.config.samplebits = wav.fmt_bit_per_sample;
rt_device_control(player->device, AUDIO_CTL_CONFIGURE, &caps);
/* set volume according to configuration */
caps.main_type = AUDIO_TYPE_MIXER;
caps.sub_type = AUDIO_MIXER_VOLUME;
caps.udata.value = player->volume;
rt_device_control(player->device, AUDIO_CTL_CONFIGURE, &caps);
return RT_EOK;
__exit:
if (player->fp)
{
fclose(player->fp);
player->fp = RT_NULL;
}
if (player->device)
{
rt_device_close(player->device);
player->device = RT_NULL;
}
return result;
}
static void wavplayer_close(struct wavplayer *player)
{
if (player->fp)
{
fclose(player->fp);
player->fp = RT_NULL;
}
if (player->device)
{
rt_device_close(player->device);
player->device = RT_NULL;
}
LOG_D("close wavplayer");
}
static int wavplayer_event_handler(struct wavplayer *player, int timeout)
{
int event;
struct play_msg msg;
#if (DBG_LEVEL >= DBG_LOG)
rt_uint8_t last_state;
#endif
rt_ssize_t result = rt_mq_recv(player->mq, &msg, sizeof(struct play_msg), timeout);
#if defined(RT_VERSION_CHECK) && (RTTHREAD_VERSION >= RT_VERSION_CHECK(5, 0, 1))
if (result <= 0)
#else
if (RT_EOK != result)
#endif
{
event = PLAYER_EVENT_NONE;
return event;
}
#if (DBG_LEVEL >= DBG_LOG)
last_state = player->state;
#endif
switch (msg.type)
{
case MSG_START:
event = PLAYER_EVENT_PLAY;
player->state = PLAYER_STATE_PLAYING;
break;
case MSG_STOP:
event = PLAYER_EVENT_STOP;
player->state = PLAYER_STATE_STOPED;
break;
case MSG_PAUSE:
event = PLAYER_EVENT_PAUSE;
player->state = PLAYER_STATE_PAUSED;
break;
case MSG_RESUME:
event = PLAYER_EVENT_RESUME;
player->state = PLAYER_STATE_PLAYING;
break;
default:
event = PLAYER_EVENT_NONE;
break;
}
rt_completion_done(&player->ack);
#if (DBG_LEVEL >= DBG_LOG)
LOG_D("EVENT:%s, STATE:%s -> %s", event_str[event], state_str[last_state], state_str[player->state]);
#endif
return event;
}
static void wavplayer_entry(void *parameter)
{
rt_err_t result = RT_EOK;
rt_int32_t size;
int event;
player.buffer = rt_malloc(WP_BUFFER_SIZE);
if (player.buffer == RT_NULL)
return;
rt_memset(player.buffer, 0, WP_BUFFER_SIZE);
player.mq = rt_mq_create("wav_p", sizeof(struct play_msg), 10, RT_IPC_FLAG_FIFO);
if (player.mq == RT_NULL)
goto __exit;
player.lock = rt_mutex_create("wav_p", RT_IPC_FLAG_FIFO);
if (player.lock == RT_NULL)
goto __exit;
player.volume = WP_VOLUME_DEFAULT;
while (1)
{
/* wait play event forever */
event = wavplayer_event_handler(&player, RT_WAITING_FOREVER);
if (event != PLAYER_EVENT_PLAY)
continue;
/* open wavplayer */
result = wavplayer_open(&player);
if (result != RT_EOK)
{
player.state = PLAYER_STATE_STOPED;
LOG_I("open wav player failed");
continue;
}
LOG_I("play start, uri=%s", player.uri);
while (1)
{
event = wavplayer_event_handler(&player, RT_WAITING_NO);
switch (event)
{
case PLAYER_EVENT_NONE:
{
/* read raw data from file stream */
size = fread(player.buffer, WP_BUFFER_SIZE, 1, player.fp);
if (size != 1)
{
/* FILE END*/
player.state = PLAYER_STATE_STOPED;
}
else
{
int16_t *p = (int16_t *)player.buffer;
for(int i=0; i < WP_BUFFER_SIZE/2; i++){ /*Add by xujc, for 12bits DAC play*/
p[i] += 32768;
p[i] >>= 4;
}
/*witte data to sound device*/
rt_device_write(player.device, 0, player.buffer, WP_BUFFER_SIZE);
}
break;
}
case PLAYER_EVENT_PAUSE:
{
/* wait resume or stop event forever */
event = wavplayer_event_handler(&player, RT_WAITING_FOREVER);
}
default:
break;
}
if (player.state == PLAYER_STATE_STOPED)
break;
}
/* close wavplayer */
wavplayer_close(&player);
LOG_I("play end");
}
__exit:
if (player.buffer)
{
rt_free(player.buffer);
player.buffer = RT_NULL;
}
if (player.mq)
{
rt_mq_delete(player.mq);
player.mq = RT_NULL;
}
if (player.lock)
{
rt_mutex_delete(player.lock);
player.lock = RT_NULL;
}
}
int wavplayer_init(void)
{
rt_thread_t tid;
tid = rt_thread_create("wav_p",
wavplayer_entry,
RT_NULL,
WP_THREAD_STATCK_SIZE,
WP_THREAD_PRIORITY, 10);
if (tid)
rt_thread_startup(tid);
return RT_EOK;
}
INIT_APP_EXPORT(wavplayer_init);
D13 附录3:wavrecorder.c(我们做了一点修改适配)
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Date Author Notes
* 2019-07-16 Zero-Free first implementation
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <wavhdr.h>
#include <wavrecorder.h>
#define DBG_TAG "WAV_RECORDER"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
struct recorder
{
rt_device_t device;
struct wavrecord_info info;
struct rt_event *event;
struct rt_completion ack;
rt_uint8_t *buffer;
FILE *fp;
rt_bool_t activated;
};
enum RECORD_EVENT
{
RECORD_EVENT_STOP = 0x01,
RECORD_EVENT_START = 0x02,
};
#define WR_BUFFER_SIZE (2048)
static struct recorder record;
static rt_err_t wavrecorder_open(struct recorder *record)
{
rt_err_t result = RT_EOK;
record->device = rt_device_find(PKG_WP_RECORD_DEVICE);
if (record->device == RT_NULL)
{
LOG_E("device %s not find", PKG_WP_RECORD_DEVICE);
return -RT_ERROR;
}
/* malloc internal buffer */
record->buffer = rt_malloc(WR_BUFFER_SIZE);
if (record->buffer == RT_NULL)
{
result = -RT_ENOMEM;
LOG_E("malloc internal buffer for recorder failed");
goto __exit;
}
rt_memset(record->buffer, 0, WR_BUFFER_SIZE);
/* open file */
record->fp = fopen(record->info.uri, "wb+");
if (record->fp == RT_NULL)
{
result = -RT_ERROR;
LOG_E("open file %s failed", record->info.uri);
goto __exit;
}
/* open micphone device */
result = rt_device_open(record->device, RT_DEVICE_OFLAG_RDONLY);
if (result != RT_EOK)
{
result = -RT_ERROR;
LOG_E("open %s device faield", PKG_WP_RECORD_DEVICE);
goto __exit;
}
record->event = rt_event_create("wav_r", RT_IPC_FLAG_FIFO);
if (record->event == RT_NULL)
{
result = -RT_ERROR;
LOG_E("create event for wav recorder failed");
goto __exit;
}
return RT_EOK;
__exit:
if (record->buffer)
{
rt_free(record->buffer);
record->buffer = RT_NULL;
}
if (record->fp)
{
fclose(record->fp);
record->fp = RT_NULL;
}
if (record->device)
{
rt_device_close(record->device);
record->device = RT_NULL;
}
if (record->event)
{
rt_event_delete(record->event);
record->event = RT_NULL;
}
return result;
}
void wavrecorder_close(struct recorder *record)
{
if (record->buffer)
{
rt_free(record->buffer);
record->buffer = RT_NULL;
}
if (record->fp)
{
fclose(record->fp);
record->fp = RT_NULL;
}
if (record->device)
{
rt_device_close(record->device);
record->device = RT_NULL;
}
if (record->event)
{
rt_event_delete(record->event);
record->event = RT_NULL;
}
}
static void wavrecord_entry(void *parameter)
{
rt_err_t result;
rt_size_t size;
struct wav_header wav = {0};
struct rt_audio_caps caps;
rt_uint32_t recv_evt, total_length = 0;
result = wavrecorder_open(&record);
if (result != RT_EOK)
{
LOG_E("open wav recorder failed");
return;
}
record.activated = RT_TRUE;
/* write 44 bytes wavheader */
fwrite(&wav, 44, 1, record.fp);
rt_kprintf("Information:\n");
rt_kprintf("samplerate %d\n", record.info.samplerate);
rt_kprintf("channels %d\n", record.info.channels);
/* set sampletate,channels, samplebits */
caps.main_type = AUDIO_TYPE_INPUT;
caps.sub_type = AUDIO_DSP_PARAM;
caps.udata.config.samplerate = record.info.samplerate;
caps.udata.config.channels = record.info.channels;
caps.udata.config.samplebits = 16;
rt_device_control(record.device, AUDIO_CTL_CONFIGURE, &caps);
LOG_D("ready to record, device %s, uri %s", PKG_WP_PLAY_DEVICE, record.info.uri);
while (1)
{
/* read raw data from sound device */
size = rt_device_read(record.device, 0, record.buffer, WR_BUFFER_SIZE);
if (size)
{
int16_t *buffer = (int16_t *)record.buffer;
for(int i = 0; i < size/2; i++) {
buffer[i] = (int16_t)(((uint16_t *)record.buffer)[i] - 32768);
}
fwrite(record.buffer, size, 1, record.fp);
total_length += size;
}
/* recive stop event */
if (rt_event_recv(record.event, RECORD_EVENT_STOP,
RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR,
RT_WAITING_NO, &recv_evt) == RT_EOK)
{
/* re-write wav header */
wavheader_init(&wav, record.info.samplerate, record.info.channels, total_length);
fseek(record.fp, 0, SEEK_SET);
wavheader_write(&wav, record.fp);
wavrecorder_close(&record);
LOG_D("total_length = %d", total_length);
/* ack event */
rt_completion_done(&record.ack);
record.activated = RT_FALSE;
break;
}
}
return;
}
rt_err_t wavrecorder_start(struct wavrecord_info *info)
{
if (record.activated != RT_TRUE)
{
rt_thread_t tid;
if (record.info.uri)
rt_free(record.info.uri);
record.info.uri = rt_strdup(info->uri);
record.info.samplerate = info->samplerate;
record.info.channels = info->channels;
record.info.samplebits = info->samplebits;
tid = rt_thread_create("wav_r", wavrecord_entry, RT_NULL, 2048, 19, 20);
if (tid)
rt_thread_startup(tid);
}
return RT_EOK;
}
rt_err_t wavrecorder_stop(void)
{
if (record.activated == RT_TRUE)
{
rt_completion_init(&record.ack);
rt_event_send(record.event, RECORD_EVENT_STOP);
rt_completion_wait(&record.ack, RT_WAITING_FOREVER);
}
return RT_EOK;
}
rt_bool_t wavrecorder_is_actived(void)
{
return record.activated;
}