传统医学诊断vs大数据Hadoop分析:基于大数据的痴呆症预测系统谁更精准?

发布于:2025-09-03 ⋅ 阅读:(19) ⋅ 点赞:(0)

🍊作者:计算机毕设匠心工作室
🍊简介:毕业后就一直专业从事计算机软件程序开发,至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。
擅长:按照需求定制化开发项目、 源码、对代码进行完整讲解、文档撰写、ppt制作。
🍊心愿:点赞 👍 收藏 ⭐评论 📝
👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~
Java实战项目
Python实战项目
微信小程序|安卓实战项目
大数据实战项目
PHP|C#.NET|Golang实战项目
🍅 ↓↓文末获取源码联系↓↓🍅

基于大数据的痴呆症预测数据可视化分析系统-功能介绍

基于大数据的痴呆症预测数据可视化分析系统是一个综合运用现代大数据技术的医疗数据分析平台,该系统充分利用Hadoop分布式存储架构和Spark大数据处理引擎,构建了完整的痴呆症相关数据处理与分析流程。系统采用Python作为主要开发语言,结合Django框架搭建稳定的后端服务架构,前端采用Vue+ElementUI+Echarts技术栈实现友好的用户交互界面和丰富的数据可视化效果。系统核心功能涵盖总体人口学特征分析、核心临床指标与认知功能分析、脑部影像学特征分析以及痴呆转化过程追踪等四大维度,能够对痴呆症相关的多维度数据进行深度挖掘和分析。通过Spark SQL和Pandas、NumPy等数据处理工具,系统可以高效处理大规模医疗数据,生成直观的统计图表和分析报告,为医疗研究人员和临床医生提供有价值的数据支持和决策参考。

基于大数据的痴呆症预测数据可视化分析系统-选题背景意义

选题背景
随着全球人口老龄化趋势的加剧,痴呆症已成为影响老年人生活质量的重大公共卫生问题,其发病率和患病人数持续攀升,给家庭和社会带来了沉重的经济负担和护理压力。传统的痴呆症诊断主要依赖医生的临床经验和单一量表评估,诊断过程相对主观且效率有限,难以满足大规模人群筛查和早期预警的需求。与此同时,医疗信息化的快速发展产生了大量包含患者基本信息、认知评估数据、脑部影像参数等多维度的医疗数据,这些数据蕴含着丰富的疾病发展规律和预测信息,但传统的数据处理方式难以充分挖掘其潜在价值。大数据技术的兴起为处理复杂医疗数据提供了新的解决方案,通过分布式计算和数据挖掘技术,能够从海量数据中发现隐藏的关联模式,为痴呆症的预测和分析提供更加客观和精确的技术支持。
选题意义
本课题的研究具有重要的理论价值和实际应用意义。从技术层面来看,该系统将大数据处理技术应用于医疗健康领域,探索了Hadoop和Spark在医疗数据分析中的具体应用方式,为类似的医疗数据处理项目提供了技术参考和实践经验。通过构建完整的数据可视化分析平台,验证了现代大数据技术在处理复杂医疗数据方面的可行性和优势。从应用层面来说,系统能够帮助医疗工作者更直观地了解痴呆症的发病规律和影响因素,通过多维度的数据分析和可视化展示,为临床诊断提供辅助性的数据支持。系统的纵向数据分析功能可以帮助识别痴呆症的早期征象,对于疾病的预防和干预具有一定的参考价值。虽然本系统作为毕业设计项目在规模和复杂度方面有一定局限性,但其展现的技术思路和分析方法为后续更大规模的医疗大数据研究奠定了基础,同时也为计算机技术在医疗健康领域的应用探索提供了有益的尝试。

基于大数据的痴呆症预测数据可视化分析系统-技术选型

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL

基于大数据的痴呆症预测数据可视化分析系统-视频展示

传统医学诊断vs大数据Hadoop分析:基于大数据的痴呆症预测系统谁更精准?

基于大数据的痴呆症预测数据可视化分析系统-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于大数据的痴呆症预测数据可视化分析系统-代码展示

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, count, when, desc, asc
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json

spark = SparkSession.builder.appName("DementiaAnalysis").config("spark.sql.adaptive.enabled", "true").getOrCreate()

def comprehensive_demographic_analysis(request):
    df = spark.read.csv('/hadoop/dementia_data/cleaned_dementia_data.csv', header=True, inferSchema=True)
    group_distribution = df.groupBy('Group').count().collect()
    group_stats = {}
    total_count = df.count()
    for row in group_distribution:
        group_name = row['Group']
        group_count = row['count']
        percentage = round((group_count / total_count) * 100, 2)
        group_stats[group_name] = {'count': group_count, 'percentage': percentage}
    gender_analysis = df.groupBy('Group', 'M/F').count().collect()
    gender_distribution = {}
    for row in gender_analysis:
        group = row['Group']
        gender = row['M/F']
        count = row['count']
        if group not in gender_distribution:
            gender_distribution[group] = {}
        gender_distribution[group][gender] = count
    age_segments = ['60-70', '71-80', '81-90', '90+']
    age_analysis = df.withColumn('age_segment', 
        when((col('Age') >= 60) & (col('Age') <= 70), '60-70')
        .when((col('Age') >= 71) & (col('Age') <= 80), '71-80')
        .when((col('Age') >= 81) & (col('Age') <= 90), '81-90')
        .otherwise('90+')).groupBy('Group', 'age_segment').count().collect()
    age_distribution = {}
    for row in age_analysis:
        group = row['Group']
        age_seg = row['age_segment']
        count = row['count']
        if group not in age_distribution:
            age_distribution[group] = {}
        age_distribution[group][age_seg] = count
    education_analysis = df.groupBy('Group').avg('EDUC').collect()
    education_stats = {}
    for row in education_analysis:
        group = row['Group']
        avg_education = round(row['avg(EDUC)'], 2)
        education_stats[group] = avg_education
    ses_analysis = df.groupBy('Group').avg('SES').collect()
    ses_stats = {}
    for row in ses_analysis:
        group = row['Group']
        avg_ses = round(row['avg(SES)'], 2)
        ses_stats[group] = avg_ses
    comprehensive_result = {
        'group_distribution': group_stats,
        'gender_analysis': gender_distribution,
        'age_distribution': age_distribution,
        'education_analysis': education_stats,
        'ses_analysis': ses_stats,
        'total_samples': total_count
    }
    return JsonResponse(comprehensive_result)

def clinical_cognitive_indicators_analysis(request):
    df = spark.read.csv('/hadoop/dementia_data/cleaned_dementia_data.csv', header=True, inferSchema=True)
    mmse_analysis = df.groupBy('Group').agg(
        avg('MMSE').alias('avg_mmse'),
        count('MMSE').alias('count_mmse')
    ).collect()
    mmse_stats = {}
    for row in mmse_analysis:
        group = row['Group']
        avg_score = round(row['avg_mmse'], 2)
        sample_count = row['count_mmse']
        mmse_stats[group] = {'average_score': avg_score, 'sample_count': sample_count}
    cdr_distribution = df.groupBy('Group', 'CDR').count().orderBy('Group', 'CDR').collect()
    cdr_stats = {}
    for row in cdr_distribution:
        group = row['Group']
        cdr_level = row['CDR']
        count = row['count']
        if group not in cdr_stats:
            cdr_stats[group] = {}
        cdr_level_name = 'Normal' if cdr_level == 0 else 'Questionable' if cdr_level == 0.5 else 'Mild' if cdr_level == 1 else 'Moderate' if cdr_level == 2 else 'Severe'
        cdr_stats[group][cdr_level_name] = count
    age_mmse_correlation = df.select('Age', 'MMSE', 'Group').collect()
    correlation_data = []
    for row in age_mmse_correlation:
        correlation_data.append({
            'age': row['Age'],
            'mmse': row['MMSE'],
            'group': row['Group']
        })
    pandas_df = pd.DataFrame(correlation_data)
    age_mmse_corr = pandas_df[['age', 'mmse']].corr().iloc[0, 1]
    education_mmse_correlation = df.select('EDUC', 'MMSE', 'Group').collect()
    edu_mmse_data = []
    for row in education_mmse_correlation:
        edu_mmse_data.append({
            'education': row['EDUC'],
            'mmse': row['MMSE'],
            'group': row['Group']
        })
    edu_pandas_df = pd.DataFrame(edu_mmse_data)
    edu_mmse_corr = edu_pandas_df[['education', 'mmse']].corr().iloc[0, 1]
    cognitive_analysis_result = {
        'mmse_group_analysis': mmse_stats,
        'cdr_distribution': cdr_stats,
        'age_mmse_correlation': round(age_mmse_corr, 3),
        'education_mmse_correlation': round(edu_mmse_corr, 3),
        'correlation_scatter_data': correlation_data[:100]
    }
    return JsonResponse(cognitive_analysis_result)

def brain_imaging_features_analysis(request):
    df = spark.read.csv('/hadoop/dementia_data/cleaned_dementia_data.csv', header=True, inferSchema=True)
    nwbv_analysis = df.groupBy('Group').agg(
        avg('nWBV').alias('avg_nwbv'),
        count('nWBV').alias('count_nwbv')
    ).collect()
    nwbv_stats = {}
    for row in nwbv_analysis:
        group = row['Group']
        avg_volume = round(row['avg_nwbv'], 4)
        sample_count = row['count_nwbv']
        nwbv_stats[group] = {'average_volume': avg_volume, 'sample_count': sample_count}
    etiv_analysis = df.groupBy('Group').agg(
        avg('eTIV').alias('avg_etiv'),
        count('eTIV').alias('count_etiv')
    ).collect()
    etiv_stats = {}
    for row in etiv_analysis:
        group = row['Group']
        avg_etiv = round(row['avg_etiv'], 2)
        sample_count = row['count_etiv']
        etiv_stats[group] = {'average_etiv': avg_etiv, 'sample_count': sample_count}
    asf_analysis = df.groupBy('Group').agg(
        avg('ASF').alias('avg_asf'),
        count('ASF').alias('count_asf')
    ).collect()
    asf_stats = {}
    for row in asf_analysis:
        group = row['Group']
        avg_asf = round(row['avg_asf'], 4)
        sample_count = row['count_asf']
        asf_stats[group] = {'average_asf': avg_asf, 'sample_count': sample_count}
    nwbv_mmse_data = df.select('nWBV', 'MMSE', 'Group').collect()
    brain_cognition_correlation = []
    for row in nwbv_mmse_data:
        brain_cognition_correlation.append({
            'brain_volume': round(row['nWBV'], 4),
            'cognitive_score': row['MMSE'],
            'diagnosis_group': row['Group']
        })
    correlation_pandas = pd.DataFrame(brain_cognition_correlation)
    brain_cognitive_corr = correlation_pandas[['brain_volume', 'cognitive_score']].corr().iloc[0, 1]
    volume_distribution = df.select('nWBV', 'Group').rdd.map(lambda row: (row['Group'], row['nWBV'])).collect()
    group_volumes = {}
    for group, volume in volume_distribution:
        if group not in group_volumes:
            group_volumes[group] = []
        group_volumes[group].append(volume)
    volume_statistics = {}
    for group, volumes in group_volumes.items():
        np_volumes = np.array(volumes)
        volume_statistics[group] = {
            'median': round(np.median(np_volumes), 4),
            'std_dev': round(np.std(np_volumes), 4),
            'min_volume': round(np.min(np_volumes), 4),
            'max_volume': round(np.max(np_volumes), 4)
        }
    imaging_analysis_result = {
        'normalized_brain_volume': nwbv_stats,
        'estimated_total_intracranial_volume': etiv_stats,
        'atlas_scaling_factor': asf_stats,
        'brain_cognition_correlation': round(brain_cognitive_corr, 3),
        'volume_detailed_statistics': volume_statistics,
        'correlation_data_sample': brain_cognition_correlation[:80]
    }
    return JsonResponse(imaging_analysis_result)

基于大数据的痴呆症预测数据可视化分析系统-结语

👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~
Java实战项目
Python实战项目
微信小程序|安卓实战项目
大数据实战项目
PHP|C#.NET|Golang实战项目
🍅 主页获取源码联系🍅


网站公告

今日签到

点亮在社区的每一天
去签到