【STM32】定时器编码器接口

发布于:2025-09-04 ⋅ 阅读:(14) ⋅ 点赞:(0)

一、编码器接口

  • 编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT的自增或自减,从而指示编码器的位置,旋转方向和旋转速度。
  • 每个高级定时器和通用定时器都拥有一个编码器接口。
  • 两个输入引脚借用了输入捕获的通道1和通道2(CH1和CH2引脚)。

1.1 正交编码器

正交编码器(输出两个相位相差90°的方波信号)

接口:一个带有方向控制的外部时钟

在这里插入图片描述
使用正交信号精度更高,AB相都可以计次,相当于计次频率提高了一倍,还可以加抗噪声电路。

1.2 编码器接口基本结构

在这里插入图片描述
此时时基单元处于托管状态,不受内部时钟影响,只受编码器影响。

1.3 工作模式

在这里插入图片描述

在这里插入图片描述
正交信号抗噪声:当出现毛刺时还是根据表中进行CNT自增,自减,但最终会回到毛刺出现之前的CNT相当于过滤掉毛刺对CNT的影响。

在这里插入图片描述

比如接了个编码器,发现数据的加减方向反了,可以调整极性,把任意一个引脚反相就能反转计数方向了。

二、编码器接口测速

上拉输入和下拉输入如何选择,一般看外部模块的输出的默认电平。如果外部模块默认输出高电平,选上拉输入,要默认输入高电平;和外部模块保持默认状态一致,防止默认电平打架。

在这里插入图片描述
接线图

源代码

  • Encoder.h 模块代码
#ifndef __ENCODER_H
#define __ENCODER_H

void Encoder_Init(void);
int16_t Encoder_Get(void);

#endif

  • Encoder.c 模块代码
#include "stm32f10x.h"                  // Device header

/**
  * 函    数:编码器初始化
  * 参    数:无
  * 返 回 值:无
  */
void Encoder_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);			//开启TIM3的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA6和PA7引脚初始化为上拉输入
	
	/*时基单元初始化*/
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
	TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;               //计数周期,即ARR的值
	TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1;                //预分频器,即PSC的值
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
	TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM3的时基单元
	
	/*输入捕获初始化*/
	TIM_ICInitTypeDef TIM_ICInitStructure;							//定义结构体变量
	TIM_ICStructInit(&TIM_ICInitStructure);							//结构体初始化,若结构体没有完整赋值
																	//则最好执行此函数,给结构体所有成员都赋一个默认值
																	//避免结构体初值不确定的问题
	TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;				//选择配置定时器通道1
	TIM_ICInitStructure.TIM_ICFilter = 0xF;							//输入滤波器参数,可以过滤信号抖动
	TIM_ICInit(TIM3, &TIM_ICInitStructure);							//将结构体变量交给TIM_ICInit,配置TIM3的输入捕获通道
	TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;				//选择配置定时器通道2
	TIM_ICInitStructure.TIM_ICFilter = 0xF;							//输入滤波器参数,可以过滤信号抖动
	TIM_ICInit(TIM3, &TIM_ICInitStructure);							//将结构体变量交给TIM_ICInit,配置TIM3的输入捕获通道
	
	/*编码器接口配置*/
	TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);
																	//配置编码器模式以及两个输入通道是否反相
																	//注意此时参数的Rising和Falling已经不代表上升沿和下降沿了,而是代表是否反相
																	//此函数必须在输入捕获初始化之后进行,否则输入捕获的配置会覆盖此函数的部分配置
	
	/*TIM使能*/
	TIM_Cmd(TIM3, ENABLE);			//使能TIM3,定时器开始运行
}

/**
  * 函    数:获取编码器的增量值
  * 参    数:无
  * 返 回 值:自上此调用此函数后,编码器的增量值
  */
int16_t Encoder_Get(void)
{
	/*使用Temp变量作为中继,目的是返回CNT后将其清零*/
	int16_t Temp;
	Temp = TIM_GetCounter(TIM3);
	TIM_SetCounter(TIM3, 0);
	return Temp;
}

  • main.c 模块代码
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Timer.h"
#include "Encoder.h"

int16_t Speed;			//定义速度变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	Timer_Init();		//定时器初始化
	Encoder_Init();		//编码器初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "Speed:");		//1行1列显示字符串Speed:
	
	while (1)
	{
		OLED_ShowSignedNum(1, 7, Speed, 5);	//不断刷新显示编码器测得的最新速度
	}
}

/**
  * 函    数:TIM2中断函数
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数为中断函数,无需调用,中断触发后自动执行
  *           函数名为预留的指定名称,可以从启动文件复制
  *           请确保函数名正确,不能有任何差异,否则中断函数将不能进入
  */
void TIM2_IRQHandler(void)
{
	if (TIM_GetITStatus(TIM2, TIM_IT_Update) == SET)		//判断是否是TIM2的更新事件触发的中断
	{
		Speed = Encoder_Get();								//每隔固定时间段读取一次编码器计数增量值,即为速度值
		TIM_ClearITPendingBit(TIM2, TIM_IT_Update);			//清除TIM2更新事件的中断标志位
															//中断标志位必须清除
															//否则中断将连续不断地触发,导致主程序卡死
	}
}

关于【STM32】定时器编码器接口的讲解就到这里,希望对你有所帮助,感谢观看ovo!