1、线程的生命周期?线程有几种状态
1.1.线程通常有五种状态,创建,就绪,运行、阻塞和死亡状态。
1.2阻塞的情况又分为三种:
(1)、等待阻塞:运行的线程执行wait方法,该线程会释放占用的所有资源,JVM会把该线程放入“等待池"中。进入这个状态后,是不能自动唤醒的,必须依靠其他线程调用notify或notifyAlI方法才能被唤醒,wait是object类的方法
(2)、同步阻塞:运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则VM会把该线程放入"锁池"中。
(3)、其他阻塞:运行的线程执行sleep或join方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep状态超时、join等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。sleep是Thread类的方法
1).新建状态(New):新创建了一个线程对象。
⒉)就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start方法。该状态的线程位于可运行线程池中,变得可运行,等待获取CPU的使用权。
3).运行状态(Running)︰就绪状态的线程获取了CPU,执行程序代码。
4).阻塞状态(Blocked):阻塞状态是线程因为某种原因放弃CPU使用权,暂时停止运行。直到线程进入就绪状态,才有机会转到运行状态。
5).死亡状态(Dead):线程执行完了或者因异常退出了run方法,该线程结束生命周期。
2、sleep()、wait()、join()、yield()的区别
1).锁池
所有需要竞争同步锁的线程都会放在锁池当中,比如当前对象的锁已经被其中一个线程得到,则其他线程需要在这个锁池进行等待,当前面的线程释放同步锁后锁池中的线程去竞争同步锁,当某个线程得到后会进入就绪队列进行等待cpu资源分配。
2).等待池
当我们调用wait ()方法后,线程会放到等待池当中,等待池的线程是不会去竞争同步锁。只有调用了notify ()或notifyAll()后等待池的线程才会开始去竞争锁,notify ()是随机从等待池选出一个线程放到锁池,而notifyAll()是将等待池的所有线程放到锁池当中
1)、sleep是 Thread类的静态本地方法,wait 则是 Object类的本地方法。
2)、sleep方法不会释放lock,但是wait会释放,而且会加入到等待队列中。
3)、sleep方法不依赖于同步器synchronized,但是wait需要依赖synchronized关键字。
4)、sleep不需要被唤醒(休眠之后推出阻塞),但是wait需要(不指定时间需要被别人中断)。
5)、sleep一般用于当前线程休眠,或者轮循暂停操作,wait 则多用于多线程之间的通信。
6)、sleep 会让出CPU 执行时间且强制上下文切换,而wait则不一定,wait后可能还是有机会重新竞争到锁继续执行的。
yield () 执行后线程直接进入就绪状态,马上释放了cpu的执行权,但是依然保留了cpu的执行资格,所以有可能cpu下次进行线程调度还会让这个线程获取到执行权继续执行
join ()执行后线程进入阻塞状态,例如在线程B中调用线程A的join (),那线程B会进入到阻塞队列,直到线程A结束或中断线程
3、说说你对线程安全的理解
不是线程安全、应该是内存安全,堆是共享内存,可以被所有线程访问
当多个线程访问一个对象时,如果不用进行额外的同步控制或其他的协调操作,调用这个对象的行为都可以获得正确的结果,我们就说这个对象是线程安全的
堆是进程和线程共有的空间,分全局堆和局部堆。全局堆就是所有没有分配的空间,局部堆就是用户分配的空间。堆在操作系统对进程初始化的时候分配,运行过程中也可以向系统要额外的堆,但是用完了要还给操作系统,要不然就是内存泄漏。
在Java中,堆是Java虚拟机所管理的内存中最大的一块,是所有线程共享的一块内存区域,在虚拟机启动时创建。堆所存在的内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存。
栈是每个线程独有的,保存其运行状态和局部自动变量的。栈在线程开始的时候初始化,每个线程的栈互相独立,因此,栈是线程安全的。操作系统在切换线程的时候会自动切换栈。栈空间不需要在高级语言里面显式的分配和释放。
目前主流操作系统都是多任务的,即多个进程同时运行。为了保证安全,每个进程只能访问分配给自己的内存空间,而不能访问别的进程的,这是由操作系统保障的。
在每个进程的内存空间中都会有一块特殊的公共区域,通常称为堆(内存)。进程内的所有线程都可以访问到该区域,这就是造成问题的潜在原因。
4、Thread、Runable的区别
Thread和Runnable的实质是继承关系,没有可比性。无论使用Runnable还是Thread,都会new Thread,然后执行run方法。用法上,如果有复杂的线程操作需求,那就选择继承Thread,如果只是简单的执行一个任务,那就实现runnable。
5、对守护线程的理解
守护线程∶为所有非守护线柱提供服务的线程,仕何一个守护先线程都是整个JVM中所有非守护线程的保姆;
守护线程类似于整个进程的一个默默无闻的小喽喽;它的生死无关重要,它却依赖整个进程而运行;哪天其他线程结束了,没有要执行的了,程序就结束了,理都没理守护线程,就把它中断了;
6、ThreadLocal的原理和使用场景
每一个Thread对象均含有一个ThreadLocalMap类型的成员变量threadLocals,它存储本线程中所有ThreadLocal对象及其对应的值
ThreadLoca1Map由一个个Entry对象构成
Entry继承自weakReference<ThreadLocal<?>>,一个Entry由ThreadLoca1对象和object构成。由此可见,Entry的key是ThreadLocal对象,并且是一个弱引用。当没指向key的强引用后,该key就会被垃圾收集器回收
当执行set方法时,ThreadLocal首先会获取当前线程对象,然后获取当前线程的ThreadLocalMap对象。再以当前ThreadLocal对象为key,将值存储进ThreadLocalMap对象中。
get方法执行过程类似。ThreadLocal首先会获取当前线程对象,然后获取当前线程的ThreadLocalMap对象。再以当前ThreadLocal对象为key,获取对应的value。
由于每一条线程均含有各自私有的ThreadLocalMap容器,这些容器相互独立互不影响,因此不会存在线程安全性问题,从而也无需使用同步机制来保证多条线程访问容器的互斥性。
使用场景:
1)、在进行对象跨层传递的时候,使用ThreadLocal可以避免多次传递,打破层次间的约束。
2)、线程间数据隔离
3)、进行事务操作,用于存储线程事务信息。
4)、数据库连接,Session会话管理。
7、并发、并行、串行的区别
串行在时间上不可能发生重叠,前一个任务没搞定,下一个任务就只能等着
并行在时间上是重叠的,两个任务在同一时刻互不干扰的同时执行。
并发允许两个任务彼此干扰。同一时间点、只有一个任务运行,交替执行
9、Java死锁如何避免?造成死锁的几个原因:
1).一个资源每次只能被一个线程使用
2).—个线程在阻塞等待某个资源时,不释放已占有资源
3).一个线程已经获得的资源,在未使用完之前,不能被强行剥夺
4).若干线程形成头尾相接的循环等待资源关系
这是造成死锁必须要达到的4个条件,如果要避免死锁,只需要不满足其中某一个条件即可。而其中前3个条件是作为锁要符合的条件,所以要避免死锁就需要打破第4个条件不出现循环等待锁的关系。
在开发过程中:
1).要注意加锁顺序,保证每个线程按同样的顺序进行加锁
2).要注意加锁时限,可以针对所设置一个超时时间
3).要注意死锁检查,这是一种预防机制,确保在第一时间发现死锁并进行解决
10、为什么用线程池?解释下线程池参数?
1)、降低资源消耗;提高线程利用率,降低创建和销毁线程的消耗。
2)、提高响应速度;任务来了,直接有线程可用可执行,而不是先创建线程,再执行。
3)、提高线程的可管理性;线程是稀缺资源,使用线程池可以统一分配调优监控。
corePoolSize 代表核心线程数,也就是正常情况下创建工作的线程数,这些线程创建后并不会消除,而是—种常驻线程
maxinumPoolSize代表的是最大线程数,它与核心线程数相对应,表示最大允许被创建的线程数,比如当前任务较多,将核心线程数都用完了,还无法满足需求时,此时就会创建新的线程,但是线程池内线程总数不会超过最大线程数
keepAliveTime、unit表示超出核心线程数之外的线程的空闲存活时间,也就是核心线程不会消除,但是超出核心线程数的部分线程如果空闲一定的时间则会被消除,我们可以通过 setKeepA7iveTime来设置空闲时间
workQueue 用来存放待执行的任务,假设我们现在核心线程都已被使用,还有任务进来则全部放入队列,直到整个队列被放满但任务还再持续进入则会开始创建新的线程
ThreadFactory 实际上是一个线程工厂,用来生产线程执行任务。我们可以选择使用默认的创建工厂,产生的线程都在同一个组内,拥有相同的优先级,且都不是守护线程。当然我们也可以选择自定义线程工厂,一般我们会根据业务来制定不同的线程工厂
Handler任务拒绝策略,有两种情况,第一种是当我们调用shutdown 等方法关闭线程池后,这时候即使线程池内部还有没执行完的任务正在执行,但是由于线程池已经关闭,我们再继续想线程池提交任务就会遭到拒绝。另一种情况就是当达到最大线程数,线程池已经没有能力继续处理新提交的任务时,这时也就拒绝。
11、线程池的底层工作原理
线程池内部是通过队列+线程实现的,当我们利用线程池执行任务时:
1).如果此时线程池中的线程数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。
2)如果此时线程池中的线程数量等于corePoolSize,但是缓冲队列workQueue未满,那么任务被放入缓冲队列。
3).如果此时线程池中的线程数量大于等于corePoolSize,缓冲队列workQueue满,并且线程池中的数量小于maximumPoolSize,建新的线程来处理被添加的任务。
4).如果此时线程池中的线程数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。
5).当线程池中的线程数量大于corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数
12、线程池中阻塞队列的作用?为什么是先添加列队而不是先创建最大线程?
1)、一般的队列只能保证作为一个有限长度的缓冲区,如果超出了缓冲长度,就无法保留当前的任务了,阻塞队列通过阻塞可以保留住当前想要继续入队的任务。
阻塞队列可以保证任务队列中没有任务时阻塞获取任务的线程,使得线程进入wait状态,释放cpu资源。
阻塞队列自带阻塞和唤醒的功能,不需要额外处理,无任务执行时,线程池利用阻塞队列的take方法挂起,从而维持核心线程的存活、不至于一直占用cpu资源
2)、在创建新线程的时候,是要获取全局锁的,这个时候其它的就得阻塞,影响了整体效率。
就好比一个企业里面有10个(core)正式工的名额,最多招10个正式工,要是任务超过正式工人数(task >core)的情况下,工厂领导(线程池)不是首先扩招工人,还是这10人,但是任务可以稍微积压一下,即先放到队列去(代价低)。10个正式工慢慢干,迟早会干完的,要是任务还在继续增加,超过正式工的加班忍耐极限了(队列满了),就的招外包帮忙了(注意是临时工)要是正式工加上外包还是不能完成任务,那新来的任务就会被领导拒绝了(线程池的拒绝策略)。
13、线程池中线程复用原理
线程池将线程和任务进行解耦,线程是线程,任务是任务,摆脱了之前通过Thread创建线程时的一个线程必须对应一个任务的限制。
在线程池中,同一个线程可以从阻塞队列中不断获取新任务来执行,其核心原理在于线程池对Thread进行了封装,并不是每次执行任务都会调用Thread.start()来创建新线程,而是让每个线程去执行一个"循环任务",在这个"循环任务"中不停检查是否有任务需要被执行,如果有则直接执行,也就是调用任务中的run方法,将run方法当成一个普通的方法执行,通过这种方式只使用固定的线程就将所有任务的run方法串联起来。
14、并发编程的三个重要特性?
原子性:一个操作要么全部执行,要么都不执行。
可见性:当一个线程对共享的变量进行了修改,其他变量需要能够看到修改后的最新值。
有序性:确保代码执行顺序的正确。
1)将i从主存读到工作内存中的副本中
2): +1的运算
3):将结果写入工作内存
4):将工作内存的值刷回主存(什么时候刷入由操作系统决定,不确定的)
15、volatile修饰符的作用?
防止JVM的指令重排。一般情况下,JVM会对代码的指令进行重排,而volatile修饰符可以防止JVM对这个变量的相关指令进行重排,确保了并发下的有序性。
保证变量的可见性。在JMM当中,每个线程都拥有一块自己的工作内存,线程可以把变量从主存读取到工作内存当中进行读写,在这种情况下,一个线程对内存做出了修改,可能另外一个线程无法看到,这样就无法保证可见性。而volatile修饰符可以标注变量,使得线程每次都会到主内存中对这个变量进行读写,从而保证了变量的可见性。
16、ReentrantLock中的公平锁和非公平锁的底层实现
ReentrantLock默认使用非公平锁
首先不管是公平锁和非公平锁,它们的底层实现都会使用AQS来进行排队,它们的区别在于:线程在使用lock()方法加锁时,如果是公平锁,会先检查AQS队列中是否存在线程在排队,如果有线程在排队,则当前线程也进行排队,如果是非公平锁,则不会去检查是否有线程在排队,而是直接竞争锁。
不管是公平锁还是非公平锁,一旦没竞争到锁,都会进行排队,当锁释放时,都是唤醒排在最前面的线程,所以非公平锁只是体现在了线程加锁阶段,而没有体现在线程被唤醒阶段。
另外,Reentranttock是可重入锁,不管是公平锁还是非公平锁都是可重入的。可重入锁指的是可以多次加锁
17、ReentrantLock中tryLock()和lock()方法的区别
1).tryLock)表示尝试加锁,可能加到,也可能加不到,该方法不会阻塞线程,如果加到锁则返回true,没有加到则返回false
2).lock()表示阻塞加锁,线程会阻塞直到加到锁,方法也没有返回值
18、CountDownLatch和Semaphore的区别和底层原理
CountDownLatch表示计数器,可以给CountDownLatch设置一个数字,一个线程调用CountDownLatch的await()将会阻塞,其他线程可以调用CountDownLatch的countDown()方法来对CountDownLatch中的数字减一,当数字被减成0后,所有await的线程都将被唤醒。
对应的底层原理就是,调用await()方法的线程会利用AQS排队,一旦数字被减为o,则会将AQS中排队的线程依次唤醒。
Semaphore表示信号量,可以设置许可的个数,表示同时允许最多多少个线程使用该信号量,通过acquire()来获取许可,如果没有许可可用则线程阻塞,并通过AQS来排队,可以通过release()方法来释放许可,当某个线程释放了某个许可后,会从AQS中正在排队的第一个线程开始依次唤醒,直到没有空闲许可。
19、Sychronized的偏向锁、轻量级锁、重量级锁
1).偏向锁:在锁对象的对象头中记录一下当前获取到该锁的线程ID,该线程下次如果又来获取该锁就可以直接获取到了
2).轻量级锁:由偏向锁升级而来,当一个线程获取到锁后,此时这把锁是偏向锁,此时如果有第二个线程来竞争锁,偏向锁就会升级为轻
级锁,
之所以叫轻量级锁,是为了和重量级锁区分开来,轻量级锁底层是通过自旋来实现的,并不会阻塞线程
3).如果自旋次数过多仍然没有获取到锁,则会升级为重量级锁,重量级锁会导致线程阻塞
4).自旋锁:自旋锁就是线程在获取锁的过程中,不会去阻塞线程,也就无所谓唤醒线程,阻塞和唤醒这两个步骤都是需要操作系统去进行的,比较消耗时间,自旋锁是线程通过CAs获取预期的一个标记,如果没有获取到,则继续循环获取,如果获取到了则表示获取到了锁,这个过程线程一直在运行中,相对而言没有使用太多的操作系统资源,比较轻量。
20、sychronized和ReentrantLock的区别
1).sychronized是一个关键字,ReentrantLock是一个类
2).sychronized会自动的加锁与释放锁,ReentrantLock需要程序员手动加锁与释放锁
3).sychronized的底层是JVM层面的锁,ReentrantLock是API层面的锁
4).sychronized是非公平锁,ReentrantLock可以选择公平锁或非公平锁
5). sychronized锁的是对象,锁信息保存在对象头中,ReentrantLock所的是线程,通过代码中int类型的state标识来标识锁的状态6. sychronized底层有一个锁升级的过程