1. C++关键字
C++ 总计 63 个关键字, C 语言 32 个关键字


2. 命名空间
在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染,namespace关键字的出现就是针对这类问题的。
2.1 命名空间定义
定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{}中即为命名空间的成员。
命名空间可以嵌套。
同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中。
2.2 命名空间使用
1.加命名空间名称及作用域限定符(部分要这么引用)
N::a;
2.使用using将命名空间中某个成员引入(先引入部分后随便用)
using N::b;
3.使用using namespace 命名空间名称引入(引入全部)
using namespce N;
3. C++输入&输出
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
cout<<"Hello world!!!"<<endl;
return 0;
}
1. 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。
2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含<iostream >头文件中。
3. <<是流插入运算符,>>是流提取运算符。
4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型。
std 是 C++ 标准库的命名空间,如何展开st d 使用更合理。
1. 在日常练习中,直接using namespace std即可,这样就很方便。
2. using namespace std展开,标准库就全部暴露出来了,如果我们定义跟库重名的类型/对象/函数,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模大,就很容易出现。所以在项目开发中尽量使用,像std::cout这样使用时指定命名空间 +using std::cout展开常用的库对象/类型等方式。
4. 缺省参数
4.1 缺省参数概念
缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。
void Func(int a = 0)
{
cout<<a<<endl;
}
int main()
{
Func(); // 没有传参时,使用参数的默认值
Func(10); // 传参时,使用指定的实参
return 0;
}
全缺省参数
void Func(int a = 10, int b = 20, int c = 30)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}
半缺省参数
void Func(int a, int b = 10, int c = 20)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}
注意:
1. 半缺省参数必须从右往左依次来给出,不能间隔着给
2. 缺省参数不能在函数声明和定义中同时出现
3. 缺省值必须是常量或者全局变量
4. C语言不支持(编译器不支持)
5. 函数重载
5.1 函数重载概念
函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数或类型 或类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。
6. 引用
6.1 引用概念
引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。
类型 & 引用变量名 ( 对象名 ) = 引用实体;
void TestRef()
{
int a = 10;
int& ra = a;//<====定义引用类型
printf("%p\n", &a);
printf("%p\n", &ra);
}
注意:引用类型必须和引用实体是同种类型的
6.2 引用特性
1. 引用在 定义时必须初始化
2. 一个变量可以有多个引用
3. 引用一旦引用一个实体,不可以在引用别的实体
void TestRef()
{
int a = 10;
// int& ra; // 该条语句编译时会出错
int& ra = a;
int& rra = a;
printf("%p %p %p\n", &a, &ra, &rra);
}
6.3 常引用
void TestConstRef()
{
const int a = 10;
//int& ra = a; // 该语句编译时会出错,a为常量
const int& ra = a;
// int& b = 10; // 该语句编译时会出错,b为常量
const int& b = 10;
double d = 12.34;
//int& rd = d; // 该语句编译时会出错,类型不同
const int& rd = d;
}
6.4 使用场景
1. 做参数
void Swap(int& left, int& right)
{
int temp = left;
left = right;
right = temp;
}
2. 做返回值
int& Count()
{
static int n = 0;
n++;
// ...
return n;
}
注意:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。
6.5 传值、传引用效率比较
以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。
引用和指针的不同点:
1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
2. 引用在定义时必须初始化,指针没有要求。
3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体。
4. 没有NULL引用,但有NULL指针。
5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)。
6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小。
7. 有多级指针,但是没有多级引用。
8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理。
9. 引用比指针使用起来相对更安全。
7. 内联函数
7.1 概念
以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。
7.2 特性
1. inline是一种 以空间换时间的做法,如果编译器将函数当成内联函数处理,在 编译阶段,会 用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
2. inline 对于编译器而言只是一个建议,不同编译器关于 inline 实现机制可能不同,一般建
议:将 函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、 不 是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。
3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。
Question : 宏的优缺点 ?
优点:
1.增强代码的复用性。
2.提高性能。
缺点:
1.不方便调试宏。(因为预编译阶段进行了替换)
2.导致代码可读性差,可维护性差,容易误用。
3.没有类型安全的检查 。
C++ 有哪些技术替代宏 ?
1. 常量定义 换用const enum
2. 短小函数定义 换用内联函数
8. auto关键字(C++11)
8.1 类型别名思考
在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。
8.2 auto 简介
在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它。
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。
Attention:使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。
8.3 auto 的使用细则
1. auto 与指针和引用结合起来使用
用 auto 声明指针类型时,用 auto 和 auto* 没有任何区别,但用 auto 声明引用类型时则必须 加 &
2. 在同一行定义多个变量
当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译
器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量 。
8.3 auto 不能推导的场景
1. auto 不能作为函数的参数
2. auto 不能直接用来声明数组
3. 为了避免与 C++98 中的 auto 发生混淆, C++11 只保留了 auto 作为类型指示符的用法
4. auto 在实际中最常见的优势用法就是跟以后会讲到的 C++11 提供的新式 for 循环,还有 lambda 表达式等进行配合使用。
9. 基于范围的for循环(C++11)
9.1
对于一个 有范围的集合 而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因 此 C++11 中引入了基于范围的 for 循环。 for 循环后的括号由冒号 “ : ” 分为两部分:第一部分是范 围内用于迭代的变量,第二部分则表示被迭代的范围 。
void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for(auto& e : array)
e *= 2;
for(auto e : array)
cout << e << " ";
return 0;
}
9.2. for 循环迭代的范围必须是确定的
1. for 循环迭代的范围必须是确定的
对于数组而言,就是数组中第一个元素和最后一个元素的范围 ;对于类而言,应该提供
begin 和 end 的方法, begin 和 end 就是 for 循环迭代的范围。
注意:以下代码就有问题,因为 for 的范围不确定
10. 指针空值---nullptr(C++11)
注意:
1. 在使用 nullptr 表示指针空值时,不需要包含头文件,因为 nullptr 是 C++11 作为新关键字引入
的 。
2. 在 C++11 中, sizeof(nullptr) 与 sizeof((void*)0) 所占的字节数相同。
3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用 nullptr 。
本文含有隐藏内容,请 开通VIP 后查看