Google MapReduce论文阅读与理解

发布于:2022-12-05 ⋅ 阅读:(215) ⋅ 点赞:(0)

一、了解Google MapReduce

Google MapReduce是一个编程模型,也是一个处理和生成超大数据集的算法模型的相关实现。用户首先创建一个Map函数处理一个基于key/value pair的数据集合,输出中间的基于key/value pair的数据集合;然后再创建一个Reduce函数用来合并所有的具有相同中间key值的中间value值。

MapReduce架构的程序能够在大量的普通配置的计算机上实现并行化处理。这个系统在运行时只关心:如何分割输入数据,在大量计算机组成的集群上的调度,集群中计算机的错误处理,管理集群中计算机之间必要的通信。采用MapReduce架构可以使那些没有并行计算和分布式处理系统开发经验的程序员有效利用分布式系统的丰富资源。

MapReduce实现运行在规模可以灵活调整的由普通机器组成的集群上:一个典型的MapReduce计算往往由几千台机器组成、处理以TB计算的数据。程序员发现这个系统非常好用:已经实现了数以百计的MapReduce程序,在Google的集群上,每天都有1000多个MapReduce程序在执行。

二、Google MapReduce的设计

Google的很多程序员,为了处理海量的原始数据,已经实现了数以百计的、专用的计算方法。这些计算方法用来处理大量的原始数据,比如,文档抓取(类似网络爬虫的程序)、Web请求日志等等;也为了计算处理各种类型的衍生数据,比如倒排索引、Web文档的图结构的各种表示形势、每台主机上网络爬虫抓取的页面数量的汇总、每天被请求的最多的查询的集合等等。大多数这样的数据处理运算在概念上很容易理解。然而由于输入的数据量巨大,因此要想在可接受的时间内完成运算,只有将这些计算分布在成百上千的主机上。如何处理并行计算、如何分发数据、如何处理错误?所有这些问题综合在一起,需要大量的代码处理,因此也使得原本简单的运算变得难以处理。

如何解决这些问题成为最需要优先考虑的问题。

为了解决上述复杂的问题,必须设计一个新的抽象模型,使用这个抽象模型,只要表述想要执行的简单运算即可,而不必关心并行计算、容错、数据分布、负载均衡等复杂的细节,这些问题都被封装在了一个库里面。设计这个抽象模型的灵感来自Lisp和许多其他函数式语言的Map和Reduce的原语。我们意识到大多数的运算都包含这样的操作:在输入数据的“逻辑”记录上应用Map操作得出一个中间key/value pair集合,然后在所有具有相同key值的value值上应用Reduce操作,从而达到合并中间的数据,得到一个想要的结果的目的。使用MapReduce模型,再结合用户实现的Map和Reduce函数,我们就可以非常容易的实现大规模并行化计算;通过MapReduce模型自带的“再次执行”(re-execution)功能,也提供了初级的容灾实现方案。

这个工作(实现一个MapReduce框架模型)的主要贡献是通过简单的接口来实现自动的并行化和大规模的分布式计算,通过使用MapReduce模型接口实现在大量普通的PC机上高性能计算。

三、Google MapReduce模型原理

MapReduce编程模型的原理是:利用一个输入key/value pair集合来产生一个输出的key/value pair集合。MapReduce库的用户用两个函数表达这个计算:Map和Reduce。

用户自定义的Map函数接受一个输入的key/value pair值,然后产生一个中间key/value pair值的集合。MapReduce库把所有具有相同中间key值I的中间value值集合在一起后传递给reduce函数。

用户自定义的Reduce函数接受一个中间key的值I和相关的一个value值的集合。Reduce函数合并这些value值,形成一个较小的value值的集合。一般的,每次Reduce函数调用只产生0或1个输出value值。通常我们通过一个迭代器把中间value值提供给Reduce函数,这样我们就可以处理无法全部放入内存中的大量的value值的集合

四、Google MapReduce的实现

MapReduce模型可以有多种不同的实现方式。如何正确选择取决于具体的环境。例如,一种实现方式适用于小型的共享内存方式的机器,另外一种实现方式则适用于大型NUMA架构的多处理器的主机,而有的实现方式更适合大型的网络连接集群。

本章节描述一个适用于Google内部广泛使用的运算环境的实现:用以太网交换机连接、由普通PC机组成的大型集群。在我们的环境里包括:
1.x86架构、运行Linux操作系统、双处理器、2-4GB内存的机器。
2.普通的网络硬件设备,每个机器的带宽为百兆或者千兆,但是远小于网络的平均带宽的一半。 
3.集群中包含成百上千的机器,因此,机器故障是常态。
4.存储为廉价的内置IDE硬盘。一个内部分布式文件系统用来管理存储在这些磁盘上的数据。文件系统通过数据复制来在不可靠的硬件上保证数据的可靠性和有效性。
5.用户提交工作(job)给调度系统。每个工作(job)都包含一系列的任务(task),调度系统将这些任务调度到集群中多台可用的机器上。

四、Google MapReduce的运作

通过将Map调用的输入数据自动分割为M个数据片段的集合,Map调用被分布到多台机器上执行。输入的数据片段能够在不同的机器上并行处理。使用分区函数将Map调用产生的中间key值分成R个不同分区(例如,hash(key) mod R),Reduce调用也被分布到多台机器上执行。分区数量(R)和分区函数由用户来指定。

 

 


1.用户程序首先调用的MapReduce库将输入文件分成M个数据片度,每个数据片段的大小一般从 16MB到64MB(可以通过可选的参数来控制每个数据片段的大小)。然后用户程序在机群中创建大量的程序副本。 
2.这些程序副本中的有一个特殊的程序–master。副本中其它的程序都是worker程序,由master分配任务。有M个Map任务和R个Reduce任务将被分配,master将一个Map任务或Reduce任务分配给一个空闲的worker。
3.被分配了map任务的worker程序读取相关的输入数据片段,从输入的数据片段中解析出key/value pair,然后把key/value pair传递给用户自定义的Map函数,由Map函数生成并输出的中间key/value pair,并缓存在内存中。
4.缓存中的key/value pair通过分区函数分成R个区域,之后周期性的写入到本地磁盘上。缓存的key/value pair在本地磁盘上的存储位置将被回传给master,由master负责把这些存储位置再传送给Reduce worker。
5.当Reduce worker程序接收到master程序发来的数据存储位置信息后,使用RPC从Map worker所在主机的磁盘上读取这些缓存数据。当Reduce worker读取了所有的中间数据后,通过对key进行排序后使得具有相同key值的数据聚合在一起。由于许多不同的key值会映射到相同的Reduce任务上,因此必须进行排序。如果中间数据太大无法在内存中完成排序,那么就要在外部进行排序。
6.Reduce worker程序遍历排序后的中间数据,对于每一个唯一的中间key值,Reduce worker程序将这个key值和它相关的中间value值的集合传递给用户自定义的Reduce函数。Reduce函数的输出被追加到所属分区的输出文件。
7.当所有的Map和Reduce任务都完成之后,master唤醒用户程序。在这个时候,在用户程序里的对MapReduce调用才返回。

在成功完成任务之后,MapReduce的输出存放在R个输出文件中(对应每个Reduce任务产生一个输出文件,文件名由用户指定)。一般情况下,用户不需要将这R个输出文件合并成一个文件–他们经常把这些文件作为另外一个MapReduce的输入,或者在另外一个可以处理多个分割文件的分布式应用中使用。

本文含有隐藏内容,请 开通VIP 后查看

网站公告

今日签到

点亮在社区的每一天
去签到