文章目录
一 召回过程优化
1. 优化思路
前迈进能够返回相似的召回结果,但是,如何让这些结果更加准确呢?
可以从下面的角度出发:
- tfidf使用的是词频和整个文档的词语,如果用户问题的某个词语没有出现过,那么此时,计算出来的相似度可能就不准确。该问题的解决思路:
- 对用户输入的问题进行文本的对齐,比如,使用训练好的word2vector,往句子中填充非主语的其他词语的相似词语。例如
python 好学 么 -->填充后是 :python 好学 么 简单 难 嘛
,这里假设word2vector学会了好学,简单,难
三者之间是相似的 - 使用word2vector对齐的好处除了应对未出现的词语,还能够提高主语的重要程度,让主语位置的tfidf的值更大,从而让相似度更加准确
- 对用户输入的问题进行文本的对齐,比如,使用训练好的word2vector,往句子中填充非主语的其他词语的相似词语。例如
- tfidf是一个词袋模型,没有考虑词和词之间的顺序
- 使用n-garm和词一起作为特征,转化为特征向量
- 不去使用tfidf处理句子得到向量。
- 使用BM25算法
- 或者 使用fasttext、word2vector,把句子转化为向量
2. 通过BM25算法代替TFIDF
2.1 BM25算法原理
BM25(BM=best matching)是tfidf的优化版本,计算公式如下
t f i d f i = t f ∗ i d f = 词 i 的数量 词语总数 ∗ l o g 总文档数 包含词 i 的文档数 tfidf_i = tf*idf = \frac{词i的数量}{词语总数}*log\frac{总文档数}{包含词i的文档数} tfidfi=tf∗idf=词语总数词i的数量∗log包含词i的文档数总文档数
其中tf称为词频,idf为逆文档频率
那么BM25是如何计算的呢?
B M 25 ( i ) = 词 i 的数量 总词数 ∗ ( k + 1 ) C C + k ( 1 − b + b ∣ d ∣ a v d l ) ∗ l o g ( 总文档数 包含 i 的文档数 ) C = t f = 词 i 的数量 总词数 , k > 0 , b ∈ [ 0 , 1 ] , d 为文档 i 的长度, a v d l 是文档平均长度 BM25(i) = \frac{词i的数量}{总词数}*\frac{(k+1)C}{C+k(1-b+b\frac{|d|}{avdl})}*log(\frac{总文档数}{包含i的文档数}) \\ C = tf=\frac{词i的数量}{总词数},k>0,b\in [0,1],d为文档i的长度,avdl是文档平均长度 BM25(i)=总词数词i的数量∗C+k(1−b+bavdl∣d∣)(k+1)C∗log(包含i的文档数总文档数)C=tf=总词数词i的数量,k>0,b∈[0,1],d为文档i的长度,avdl是文档平均长度
可以看到,BM25和tfidf的计算结果很相似,唯一的区别在于中多了一项,这一项是用来对tf的结果进行的一种变换。
把 1 − b + b d a v d l 1-b+b\frac{d}{avdl} 1−b+bavdld中的b看成0,那么此时中间项的结果为 ( k + 1 ) t f k + t f \frac{(k+1)tf}{k+tf} k+tf(k+1)tf,通过设置一个k,就能够保证其最大值为 1 1 1,达到限制tf过大的目的。
即:
( k + 1 ) t f k + t f = k + 1 1 + k t f , 上下同除 t f \begin{align} &\frac{(k+1)tf}{k+tf}= \frac{k+1}{1+\frac{k}{tf}} \qquad \qquad \qquad,上下同除tf \end{align} k+tf(k+1)tf=1+tfkk+1,上下同除tf
k不变的情况下,上式随着tf的增大而增大,上限为k+1,但是增加的程度会变小,如下图所示。
在一个句子中,某个词重要程度应该是随着词语的数量逐渐衰减的,所以中间项对词频进行了惩罚,随着次数的增加,影响程度的增加会越来越小。通过设置k值,能够保证其最大值为k+1,k往往取值1.2
。
其变化如下图(无论k为多少,中间项的变化程度会随着次数的增加,越来越小):
同时 1 − b + b d a v d l 1-b+b\frac{d}{avdl} 1−b+bavdld的作用是用来对文本的长度进行归一化。
例如在考虑整个句子的tfidf的时候,如果句子的长度太短,那么计算的总的tfidf的值是要比长句子的tfidf的值要低的。所以可以考虑对句子的长度进行归一化处理。
可以看到,当句子的长度越短, 1 − b + b ∣ d ∣ a v d l 1-b+b\frac{|d|}{avdl} 1−b+bavdl∣d∣的值是越小,作为分母的位置,会让整个第二项越大,从而达到提高短文本句子的BM25的值的效果。当b的值为0,可以禁用归一化,b往往取值0.75
其变化效果如下:
2.2 BM25算法实现
其实BM25和Tfidf的区别不大,所以可以在之前sciket-learn的TfidfVectorizer基础上进行修改,获取BM25的计算结果,主要也是修改其中的fit
方法和transform
方法
在sklearn的TfidfVectorizer中
,首先接收参数,其次会调用TfidfTransformer
来完成其他方法的调用
继承TfidfVectorizer完成 参数的接收
from sklearn.feature_extraction.text import TfidfVectorizer,TfidfTransformer,_document_frequency from sklearn.base import BaseEstimator,TransformerMixin from sklearn.preprocessing import normalize from sklearn.utils.validation import check_is_fitted import numpy as np import scipy.sparse as sp class Bm25Vectorizer(CountVectorizer): def __init__(self,k=1.2,b=0.75, norm="l2", use_idf=True, smooth_idf=True,sublinear_tf=False,*args,**kwargs): super(Bm25Vectorizer,self).__init__(*args,**kwargs) self._tfidf = Bm25Transformer(k=k,b=b,norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) @property def k(self): return self._tfidf.k @k.setter def k(self, value): self._tfidf.k = value @property def b(self): return self._tfidf.b @b.setter def b(self, value): self._tfidf.b = value def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. """ X = super(Bm25Vectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. """ X = super(Bm25Vectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(Bm25Vectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
完成自己的
Bm25transformer
,只需要再原来基础的代码上进心修改部分即可。sklearn中的转换器类的实现要求,不能直接继承已有的转换器类class Bm25Transformer(BaseEstimator, TransformerMixin): def __init__(self,k=1.2,b=0.75, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.k = k self.b = b ##################以下是TFIDFtransform代码########################## self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ _X = X.toarray() self.avdl = _X.sum()/_X.shape[0] #句子的平均长度 # print("原来的fit的数据:\n",X) #计算每个词语的tf的值 self.tf = _X.sum(0)/_X.sum() #[M] #M表示总词语的数量 self.tf = self.tf.reshape([1,self.tf.shape[0]]) #[1,M] # print("tf\n",self.tf) ##################以下是TFIDFtransform代码########################## if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features, format='csr') return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ ########### 计算中间项 ############### cur_tf = np.multiply(self.tf, X.toarray()) #[N,M] #N表示数据的条数,M表示总词语的数量 norm_lenght = 1 - self.b + self.b*(X.toarray().sum(-1)/self.avdl) #[N] #N表示数据的条数 norm_lenght = norm_lenght.reshape([norm_lenght.shape[0],1]) #[N,1] middle_part = (self.k+1)*cur_tf /(cur_tf +self.k*norm_lenght) ############# 结算结束 ################ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.floating): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag ############# 中间项和结果相乘 ############ X = X.toarray()*middle_part if not sp.issparse(X): X = sp.csr_matrix(X, dtype=np.float64) ############# ######### if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): ##################以下是TFIDFtransform代码########################## # if _idf_diag is not set, this will raise an attribute error, # which means hasattr(self, "idf_") is False return np.ravel(self._idf_diag.sum(axis=0))
完整代码参考:
https://github.com/SpringMagnolia/Bm25Vectorzier/blob/master/BM25Vectorizer.py
测试简单使用,观察和tfidf的区别:
from BM25Vectorizer import Bm25Vectorizer from sklearn.feature_extraction.text import TfidfVectorizer if __name__ == '__main__': # format_weibo(word=False) # format_xiaohuangji_corpus(word=True) bm_vec = Bm25Vectorizer() tf_vec = TfidfVectorizer() # 1. 原始数据 data = [ 'hello world', 'oh hello there', 'Play it', 'Play it again Sam,24343,123', ] # 2. 原始数据向量化 bm_vec.fit(data) tf_vec.fit(data) features_vec_bm = bm_vec.transform(data) features_vec_tf = tf_vec.transform(data) print("Bm25 result:",features_vec_bm.toarray()) print("*"*100) print("Tfidf result:",features_vec_tf.toarray())
输出如下:
Bm25 result: [[0. 0. 0. 0.47878333 0. 0. 0. 0. 0. 0.8779331 ] [0. 0. 0. 0.35073401 0. 0.66218791 0. 0. 0.66218791 0. ] [0. 0. 0. 0. 0.70710678 0. 0.70710678 0. 0. 0. ] [0.47038081 0.47038081 0.47038081 0. 0.23975776 0. 0.23975776 0.47038081 0. 0. ]] ********************************************************************************** Tfidf result: [[0. 0. 0. 0.6191303 0. 0. 0. 0. 0. 0.78528828] [0. 0. 0. 0.48693426 0. 0.61761437 0. 0. 0.61761437 0. ] [0. 0. 0. 0. 0.70710678 0. 0.70710678 0. 0. 0. ] [0.43671931 0.43671931 0.43671931 0. 0.34431452 0. 0.34431452 0.43671931 0. 0. ]]
2.3 修改之前的召回代码
修改之前召回的代码只需要把调用tfidfvectorizer改成调用Bm25vectorizer
3. 使用Fasttext实现获取句子向量
3.1 基础方法介绍
这里可以使用fasttext,word2vector等方式实现获取词向量,然后对一个句子中的所有词语的词向量进行平均,获取整个句子的向量表示,即sentence Vector
,该实现方法在fasttext和Word2vector中均有实现,而且通过参数的控制,实现N-garm的效果
假设有文本a.txt
如下:
我 很 喜欢 她
今天 天气 不错
我 爱 深度学习
那么可以实现获取句子向量的方法如下
from fastText import FastText
#训练模型,设置n-garm=2
model = FastText.train_unsupervised(input="./a.txt",minCount=1,wordNgrams=2)
#获取句子向量,是对词向量的平均
model.get_sentence_vector("我 是 谁")
3.2 训练模型和封装代码
这里使用之前采集的相似文本数据作为训练样本
步骤如下:
- 进行分词之后写入文件中
- 进行模型的训练
- 使用模型获取句子向量,并且封装代码
- 将之前的BM25的代码替换为该代码
3.2.1 分词写入文件
这里使用单个字作为特征,只需要注意,英文使用单个词作为特征
"""
使用单个字作为特征,进行fasttext训练,最后封装代码获取召回结果
"""
import string
def word_split(line):
#对中文按照字进行处理,对英文不分为字母
#即 I爱python --> i 爱 python
letters = string.ascii_lowercase+"+"+"/" #c++,ui/ue
result = []
temp = ""
for word in line:
if word.lower() in letters:
temp+=word.lower()
else:
if temp !="":
result.append(temp)
temp = ""
result.append(word)
if temp!="":
result.append(temp)
return result
def process_data():
path1 = r"corpus\final_data\merged_q.txt"
path2 = r"corpus\final_data\merged_sim_q.txt"
save_path = r"corpus\recall_fasttext_data\data.txt"
filter = set()
with open(path1) as f,open(save_path,"a") as save_f:
for line in f:
line = line.strip()
if line not in filter:
filter.add(line)
_temp = " ".join(word_split(line))
save_f.write(_temp+"\n")
with open(path2) as f,open(save_path,"a") as save_f:
for line in f:
line = line.strip()
if line not in filter:
filter.add(line)
_temp = " ".join(word_split(line))
save_f.write(_temp+"\n")
3.2.2 训练模型
训练fasttext的model,用来生成词向量
def train_model(fasttext_model_path): logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) save_path = r"corpus\recall_fasttext_data\data.txt" model = FastText.train_unsupervised(save_path,epoch=20,minCount=3,wordNgrams=2) model.save_model(fasttext_model_path)
对现有的QA问答对,生成向量,传入pysparnn中构建索引
def get_base_text_vectors(cp_dump_path,model): #保存到本地pkl文件,防止每次都生成一次 if os.path.exists(cp_dump_path): cp = pickle.load(open(cp_dump_path,"rb")) else: print(QA_dict) q_lines = [q for q in QA_dict] q_cuted_list = [" ".join(word_split(i)) for i in q_lines] lines_vectors = [] for q_cuted in q_cuted_list: lines_vectors.append(model.get_sentence_vector(q_cuted)) cp = ci.MultiClusterIndex(lines_vectors,q_lines) pickle.dump(cp,open(cp_dump_path,"wb")) return cp
传入用户的问题,进行分词和句子向量的获取,获取搜索的结果
def get_search_vectors(cp,model,search_line): line_cuted = " ".join(word_split(search_line)) line_vec = model.get_sentence_vector(line_cuted) #这里的line_vec中可以有多个句子的向量表示,能够返回每个句子的搜索结果 cp_search_list = cp.search(line_vec,k=10,k_clusters=10,return_distance=True) #TODO 对搜索的结果进行关键字的过滤 return cp_search_list
测试模型的效果
from fastext_vectors import get_search_vectors,train_model,get_base_text_vectors import fastText if __name__ == '__main__': fasttext_model_path = "corpus/build_questions/fasttext_recall.model" cp_dump_path = "corpus/build_questions/cp_recall.pkl" # train_model(fasttext_model_path) model = fastText.load_model(fasttext_model_path) cp = get_base_text_vectors(cp_dump_path,model) ret = get_search_vectors(cp,model,"女孩学python容易么?") print(ret)
输出如下:
[[('0.0890376', '学习Python需要什么基础,学起来更容易?'), ('0.090688944', '学习PHP的女生多吗?女生可以学吗?'), ('0.092773676', 'Python适合什么人学习?'), ('0.09416294', 'Python语言适合什么样的人学?'), ('0.102790296', 'python语言容易学习吗?'), ('0.1050359', '学习测试的女生多吗?女生可以学吗?'), ('0.10546541', 'Python好学吗?'), ('0.11058545', '学习Python怎样?'), ('0.11080605', '怎样学好Python?'), ('0.11124289', '学生怎么上课的?')]]
3.2.3 基础封装
#lib/SentenceVectorizer
"""
使用fasttext 实现sentence to vector
"""
import fastText
from fastText import FastText
import config
from lib import cut
import logging
import os
class SentenceVectorizer:
def __init__(self):
if os.path.exists(config.recall_fasttext_model_path):
self.model = fastText.load_model(config.recall_fasttext_model_path)
else:
# self.process_data()
self.model = self.build_model()
self.fited = False
def fit_transform(self,sentences):
"""处理全部问题数据"""
lines_vectors = self.fit(sentences)
return lines_vectors
def fit(self,lines):
lines_vectors = []
for q_cuted in lines:
lines_vectors.append(self.model.get_sentence_vector(q_cuted))
self.fited = True
return lines_vectors
def transform(self,sentence):
"""处理用户输入的数据"""
assert self.fited = True
line_vec = self.model.get_sentence_vector(" ".join(sentence))
return line_vec
def build_model(self):
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
model = FastText.train_unsupervised(config.recall_fasttext_data_path, epoch=20, minCount=3, wordNgrams=2)
model.save_model(config.recall_fasttext_model_path)
return model
def process_data(self):
path1 = r"corpus\final_data\merged_q.txt"
path2 = r"corpus\final_data\merged_sim_q.txt"
save_path = r"corpus\recall_fasttext_data\data.txt"
filter = set()
with open(path1) as f, open(save_path, "a") as save_f:
for line in f:
line = line.strip()
if line not in filter:
filter.add(line)
_temp = " ".join(cut(line,by_word=True))
save_f.write(_temp + "\n")
with open(path2) as f, open(save_path, "a") as save_f:
for line in f:
line = line.strip()
if line not in filter:
filter.add(line)
_temp = " ".join(cut(line,by_word=True))
save_f.write(_temp + "\n")