RDD的转换Value类型map(func)案例_大数据培训

发布于:2022-12-24 ⋅ 阅读:(393) ⋅ 点赞:(0)

RDD的转换

RDD整体上分为Value类型和Key-Value类型

1 Value类型

1.1 map(func)案例

  1. 作用:返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
  2. 需求:创建一个1-10数组的RDD,将所有元素*2形成新的RDD

(1)创建

scala> var source  = sc.parallelize(1 to 10)

source: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at <console>:24

(2)打印

scala> source.collect()

res7: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(3)将所有元素*2

scala> val mapadd = source.map(_ * 2)

mapadd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[9] at map at <console>:26

(4)打印最终结果

scala> mapadd.collect()

res8: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

想要了解跟多关于大数据培训课程内容欢迎关注尚硅谷大数据培训,尚硅谷除了这些技术文章外还有免费的高质量大数据培训课程视频供广大学员下载学习。

 


网站公告

今日签到

点亮在社区的每一天
去签到