神经网络最重要的是什么,神经网络的特点和功能

发布于:2023-01-18 ⋅ 阅读:(332) ⋅ 点赞:(0)

神经网络到底有什么作用,具体是用来干什么的?

神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。神经网络可以用于模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。

随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。

神经网络的功能!

完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等AI爱发猫 www.aifamao.com

在机器学习和相关领域,人工神经网络(人工神经网络)的计算模型灵感来自动物的中枢神经系统(尤其是脑),并且被用于估计或可以依赖于大量的输入和一般的未知近似函数。

人工神经网络通常呈现为相互连接的“神经元”,它可以从输入的计算值,并且能够机器学习以及模式识别由于它们的自适应性质的系统。

人工神经网络的最大优势是他们能够被用作一个任意函数逼近的机制,那是从观测到的数据“学习”。然而,使用起来也不是那么简单的,一个比较好理解的基本理论是必不可少的。

神经网络能干什么?

神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。

例如预报天气:温度湿度气压等作为输入天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度湿度气压等得出即将得天气情况当然这样的例子不够精确,但是神经网络得典型应用了。

神经网络计算机有哪些用途?

许多新型的电子计算机不仅拥有高速的计算功能,而且还能模拟人脑的某些思维活动,就是说,拥有某些智能化的功能。然而,如果严格地来鉴定一下,它们离真正的人脑思维功能实在差得太远了,而且有许多本质的差异。

主要表现在人脑拥有高度的自我学习和联想创造的能力,以及更为高级的寻找最优方案和各种理性的、情感的功能。目前一种称之为神经网络计算机的新型电脑已经制造出来了。它能像人脑那样进行判断和预测。

它不需要输入程序,可以直观地作出答案,也就是说它“看”到什么就能自行作出反应。它能同时接收几种信号并进行处理,而不像目前已有的计算机那样一次只能输入一个信号。譬如,它能区别出一个签名的真伪。

它不是凭签名的图形是否相像来判断的,而是根据本人在签名时笔尖上的压力随时间的变化以及移动速度来判断的。神经网络计算机目前主要的用途是识别各种极细微的变化和趋热,并发出信号。

已经有人用它来控制热核聚变反应,监督机器的运行,甚至用来挑选苹果和预测股市行情。

神经网络 的四个基本属性是什么?

神经网络的四个基本属性:(1)非线性:非线性是自然界的普遍特征。脑智能是一种非线性现象。人工神经元处于两种不同的激活或抑制状态,它们在数学上是非线性的。

由阈值神经元组成的网络具有更好的性能,可以提高网络的容错性和存储容量。(2)无限制性:神经网络通常由多个连接广泛的神经元组成。

一个系统的整体行为不仅取决于单个神经元的特性,而且还取决于单元之间的相互作用和互连。通过单元之间的大量连接来模拟大脑的非限制性。联想记忆是一个典型的无限制的例子。

(3)非常定性:人工神经网络具有自适应、自组织和自学习的能力。神经网络处理的信息不仅会发生变化,而且非线性动态系统本身也在发生变化。迭代过程通常用来描述动态系统的演化。

(4)非凸性:在一定条件下,系统的演化方向取决于特定的状态函数。例如,能量函数的极值对应于系统的相对稳定状态。非凸性是指函数具有多个极值,系统具有多个稳定平衡态,从而导致系统演化的多样性。

扩展资料:神经网络的特点优点:人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。

例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。

预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。

寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。参考资料:百度百科——人工神经网络。

神经网络到底能干什么?

神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。

例如预报天气:温度湿度气压等作为输入天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度湿度气压等得出即将得天气情况当然这样的例子不够精确,但是神经网络得典型应用了。

希望采纳!

概率神经网络主要是用来做什么的?

作用:这种网络已较广泛地应用于非线性滤波、模式分类、联想记忆和概率密度估计当中。概率神经网络是由Specht博士在1989年提出的,它与统计信号处理的许多概念有着紧密的联系。

当这种网络用于检测和模式分类时,可以得到贝叶斯最优结果。它通常由4层组成。第一层为输入层,每个神经元均为单输入单输出,其传递函数也为线性的,这一层的作用只是将输入信号用分布的方式来表示。

第二层称之为模式层,它与输入层之间通过连接权值Wij相连接.模式层神经元的传递函数不再是通常的Sigmoid函数,而为g(Zi)=exp[(Zi-1)/(s*s)]其中,Zi为该层第i个神经元的输入,s为均方差。

第三层称之为累加层,它具有线性求和的功能。这一层的神经元数目与欲分的模式数目相同。第四层即输出层具有判决功能,它的神经元输出为离散值1和-1(或0),分别代表着输入模式的类别。

许多研究已表明概率神经网络具有如下特性:(1)训练容易,收敛速度快,从而非常适用于实时处理;(2)可以完成任意的非线性变换,所形成的判决曲面与贝叶斯最优准则下的曲面相接近;(3)具有很强的容错性;(4)模式层的传递函数可以选用各种用来估计概率密度的核函数,并且,分类结果对核函数的形式不敏感;(5)各层神经元的数目比较固定,因而易于硬件实现。

神经网络是什么

神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。

人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。

作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。扩展资料:神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

主要的研究工作集中在以下几个方面:1、生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

2、建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

3、算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

参考资料:百度百科-神经网络(通信定义)

 


网站公告

今日签到

点亮在社区的每一天
去签到