红黑树实现

发布于:2023-01-19 ⋅ 阅读:(411) ⋅ 点赞:(0)

1.红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

2.红黑树的特性

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

3.红黑树插入实现

前面插入和搜索二叉树和平衡二叉树没有区别一样的访问方式,区别就在,他的节点的颜色
有三种情况
第一种:叔叔节点存在且为红色,那就让父亲节点和叔叔节点变黑(因为要求不能连续的红上面特性有写),再让祖父节点变红,为什么要变红,因为他可能是局部节点
在这里插入图片描述

第二种:叔叔节点不存在或者为黑,那就进行右旋,不过也有可能是左旋,看那边的节点比较高
在这里插入图片描述

第三种:这种和第二种差不多,区别就是cur等于父亲节点的right,那就是个折线,那就要进行双旋,双旋当然,也要和第二种分情况,看是先左旋还是先右旋
在这里插入图片描述

4.全部代码包含测试用例

#pragma once
#include <assert.h>
#include <vector>
#include <queue>
#include <time.h>

enum Colour
{
	RED,
	BLACK,
};

template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	pair<K, V> _kv;

	Colour _col;

	RBTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)
	{}
};

template<class K, class V>
struct RBTree
{
	typedef RBTreeNode<K, V> Node;
public:


	bool Insert(const pair<K, V>& kv)
	{
		// 1、搜索树的规则插入
		// 2、看是否违反平衡规则,如果违反就需要处理:旋转
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		cur->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		cur->_parent = parent;

		//存在连续的红色节点
		while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			assert(grandfater);

			if (grandfater->_left == parent)
			{
				Node* uncle = grandfater->_right;
				// 情况一:
				if (uncle && uncle->_col == RED) // 叔叔存在且为红
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					// 继续往上处理
					cur = grandfater;
					parent = cur->_parent;
				}
				else // 情况二:叔叔不存在 或者 叔叔存在且为黑
				{ 
					if (cur == parent->_left)
					{
						//     g
			            //   p
			            // c
						RotateR(grandfater);//右旋
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else//情况三: cur等于parent的right形成折现    双旋 
					{
						//     g
					    //   p
					    //     c 
						RotateL(parent);
						RotateR(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
			else//(grandfater->_right == parent)
			{
				Node* uncle = grandfater->_left;
				// 情况一:
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					// 继续往上处理
					cur = grandfater;
					parent = cur->_parent;
				}
				else// 情况二:叔叔不存在 或者 叔叔存在且为黑
				{
					if (cur == parent->_right)
					{
						// g
                        //   p
                        //     c 
						RotateL(grandfater);//左旋

						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else//情况三: cur等于parent的right形成折现    双旋 
					{
						// g
				        //   p
				        // c
						RotateR(parent);
						RotateL(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}
					break;
				}
			}
		}

		_root->_col = BLACK;

		return true;
	}


	vector<vector<int>> levelOrder() {
		vector<vector<int>> vv;
		if (_root == nullptr)
			return vv;

		queue<Node*> q;
		int levelSize = 1;
		q.push(_root);

		while (!q.empty())
		{
			// levelSize控制一层一层出
			vector<int> levelV;
			while (levelSize--)
			{
				Node* front = q.front();
				q.pop();
				levelV.push_back(front->_kv.first);
				if (front->_left)
					q.push(front->_left);

				if (front->_right)
					q.push(front->_right);
			}
			vv.push_back(levelV);
			for (auto e : levelV)
			{
				cout << e << " ";
			}
			cout << endl;

			// 上一层出完,下一层就都进队列
			levelSize = q.size();
		}

		return vv;
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parent == ppNode->_left)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppNode = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
	}

	int _maxHeight(Node* root)
	{
		if (root == nullptr)
			return 0;

		int lh = _maxHeight(root->_left);
		int rh = _maxHeight(root->_right);

		return lh > rh ? lh + 1 : rh + 1;
	}

	int _minHeight(Node* root)
	{
		if (root == nullptr)
			return 0;

		int lh = _minHeight(root->_left);
		int rh = _minHeight(root->_right);

		return lh < rh ? lh + 1 : rh + 1;
	}


	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}

	bool _IsValidRBTree(Node* pRoot, size_t k, const size_t blackCount)
	{
		//走到null之后,判断k和black是否相等
		if (nullptr == pRoot)
		{
			if (k != blackCount)
			{
				cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;
				return false;
			}
			return true;
		}

		// 统计黑色节点的个数
		if (BLACK == pRoot->_col)
			k++;

		// 检测当前节点与其双亲是否都为红色
		if (RED == pRoot->_col && pRoot->_parent && pRoot->_parent->_col == RED)
		{
			cout << "违反性质三:存在连在一起的红色节点" << endl;
			return false;
		}

		return _IsValidRBTree(pRoot->_left, k, blackCount) &&
			_IsValidRBTree(pRoot->_right, k, blackCount);
	}

public:

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}

		void Height()
		{
			cout << "最长路径:" << _maxHeight(_root) << endl;
			cout << "最短路径:" << _minHeight(_root) << endl;
		}


		bool IsBalanceTree()
		{
			// 检查红黑树几条规则

			Node* pRoot = _root;
			// 空树也是红黑树
			if (nullptr == pRoot)
				return true;

			// 检测根节点是否满足情况
			if (BLACK != pRoot->_col)
			{
				cout << "违反红黑树性质二:根节点必须为黑色" << endl;
				return false;
			}

			// 获取任意一条路径中黑色节点的个数 -- 比较基准值
			size_t blackCount = 0;
			Node* pCur = pRoot;
			while (pCur)
			{
				if (BLACK == pCur->_col)
					blackCount++;

				pCur = pCur->_left;
			}

			// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数
			size_t k = 0;
			return _IsValidRBTree(pRoot, k, blackCount);
		}

private:

	Node* _root = nullptr;
};

void TestRBTree1()
{
	int a[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
	//int a[] = { 30, 29, 28, 27, 26, 25, 24, 11, 8, 7, 6, 5, 4, 3, 2, 1 };
	RBTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}
	t.levelOrder();
	t.InOrder();
	t.Height();
}

void TestRBTree2()
{
	const size_t N = 1024 * 1024;
	vector<int> v;
	v.reserve(N);
	srand(time(0));
	for (size_t i = 0; i < N; ++i)
	{
		v.push_back(rand());
		//v.push_back(i);
	}

	RBTree<int, int> t;
	for (auto e : v)
	{
		t.Insert(make_pair(e, e));
	}

	//t.levelOrder();
	//cout << endl;
	cout << "是否红黑?" << t.IsBalanceTree() << endl;
	t.Height();

	//t.InOrder();
}

5.红黑树实现set和map

下面diamagnetic是先解决了,封装set和map的问题,就是传参问题map传参是pair<K,V>而set传的参是k,那么也简单,把他变成模板就好了,传什么就是什么参数
set.h

#pragma once

#include"RBTree.h"

namespace li
{
	template<class K>
	class set
	{
	public:
		bool insert(const  K& key)
		{
			return _t.Insert(key);
		}
	private:
		RBTree<K,K> _t;
	};

	void test_set1()
	{
		set<int> s;
		s.insert(8);
		s.insert(6);
		s.insert(11);
		s.insert(5);
		s.insert(6);
		s.insert(7);
		s.insert(10);
		s.insert(13);
		s.insert(12);
		s.insert(15);
	}
}

map.h

#pragma once

#include"RBTree.h"

namespace li
{
	template<class K,class V>
	class map
	{
	public:

		bool insert(const pair<K,V>& kv)
		{
			return _t.Insert(kv);
		}
	private:
		RBTree<K, pair<K,V>> _t;
	};

	void test_map1()
	{
		map<int, int> m;
		m.insert(make_pair(1, 1));
		m.insert(make_pair(2, 2));
		m.insert(make_pair(3, 3));
		m.insert(make_pair(4, 4));
	}
}


红黑树代码

#pragma once

enum Colour
{
	RED,
	BLACK,
};

template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	T _data; // 数据

	Colour _col;

	RBTreeNode(const T& data)
		:_data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)
	{}
};

template<class K, class T>
struct RBTree
{
	typedef RBTreeNode<T> Node;
public:
	bool Insert(const T& data)
	{
		// 1、搜索树的规则插入
		// 2、看是否违反平衡规则,如果违反就需要处理:旋转
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_data < data)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_data > data)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(data);
		cur->_col = RED;
		if (parent->_data < data)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		cur->_parent = parent;

		//存在连续的红色节点
		while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			assert(grandfater);

			if (grandfater->_left == parent)
			{
				Node* uncle = grandfater->_right;
				// 情况一:
				if (uncle && uncle->_col == RED) // 叔叔存在且为红
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					// 继续往上处理
					cur = grandfater;
					parent = cur->_parent;
				}
				else // 情况二:叔叔不存在 或者 叔叔存在且为黑
				{ 
					if (cur == parent->_left)
					{
						//     g
			            //   p
			            // c
						RotateR(grandfater);//右旋
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else//情况三: cur等于parent的right形成折现    双旋 
					{
						//     g
					    //   p
					    //     c 
						RotateL(parent);
						RotateR(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
			else//(grandfater->_right == parent)
			{
				Node* uncle = grandfater->_left;
				// 情况一:
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					// 继续往上处理
					cur = grandfater;
					parent = cur->_parent;
				}
				else// 情况二:叔叔不存在 或者 叔叔存在且为黑
				{
					if (cur == parent->_right)
					{
						// g
                        //   p
                        //     c 
						RotateL(grandfater);//左旋

						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else//情况三: cur等于parent的right形成折现    双旋 
					{
						// g
				        //   p
				        // c
						RotateR(parent);
						RotateL(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}
					break;
				}
			}
		}

		_root->_col = BLACK;

		return true;
	}


	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parent == ppNode->_left)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppNode = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
	}

private:

	Node* _root = nullptr;
};

看到这里细心的你发现了,pair的比较并不适合我们的红黑树,因为pair的比较不是只比较key的,所以我们还要再做下改造
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看到通过了仿函数来解决这个问题

6.map和set迭代器实现

红黑树

#pragma once

enum Colour
{
	RED,
	BLACK,
};

template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	T _data; // 数据

	Colour _col;

	RBTreeNode(const T& data)
		:_data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)
	{}
};

template<class T, class Ref, class Ptr>
struct __RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;
	Node* _node;

	__RBTreeIterator(Node* node)
		:_node(node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	Self& operator++()
	{
		if (_node->_right == nullptr)
		{
			// 找祖先里面,孩子是父亲左的那个
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && parent->_right == cur)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}
		else
		{
			// 右子树的最左节点
			Node* subLeft = _node->_right;
			while (subLeft->_left)
			{
				subLeft = subLeft->_left;
			}

			_node = subLeft;
		}

		return *this;
	}

	Self operator++(int)
	{
		Self tmp(*this);

		++(*this);

		return tmp;
	}

	Self& operator--()
	{
		if (_node->_left == nullptr)
		{
			// 找祖先里面,孩子是父亲
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}
		else
		{
			// 左子树的最右节点
			Node* subRight = _node->_left;
			while (subRight->_right)
			{
				subRight = subRight->_right;
			}

			_node = subRight;
		}

		return *this;
	}

	Self operator--(int)
	{
		Self tmp(*this);

		--(*this);

		return tmp;
	}

	bool operator!=(const Self& s) const
	{
		return _node != s._node;
	}

	bool operator==(const Self& s) const
	{
		return _node == s->_node;
	}
};

// T决定红黑树存什么数据
// set  RBTree<K, K>
// map  RBTree<K, pair<K, V>>
// KeyOfT -> 支持取出T对象中key的仿函数
template<class K, class T,class KeyOfT>
struct RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef __RBTreeIterator<T, T&, T*> iterator;
	typedef __RBTreeIterator<T, const T&, const T*> const_iterator;
	iterator Begin()
	{
		Node* subLeft = _root;
		while (subLeft && subLeft->_left)
		{
			subLeft = subLeft->_left;
		}

		return iterator(subLeft);
	}

	iterator End()
	{
		return iterator(nullptr);
	}

	const_iterator Begin() const
	{
		Node* subLeft = _root;
		while (subLeft && subLeft->_left)
		{
			subLeft = subLeft->_left;
		}

		return const_iterator(subLeft);
	}

	const_iterator End() const
	{
		return const_iterator(nullptr);
	}

	pair<iterator, bool>Insert(const T& data)
	{
		// 1、搜索树的规则插入
		// 2、看是否违反平衡规则,如果违反就需要处理:旋转
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(iterator(_root), true);
		}

		KeyOfT kot;

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(iterator(cur), true);
			}
		}

		cur = new Node(data);
		Node* newnode = cur;
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		cur->_parent = parent;

		// 存在连续红色节点
		while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			assert(grandfater);

			if (grandfater->_left == parent)
			{
				Node* uncle = grandfater->_right;
				// 情况一:
				if (uncle && uncle->_col == RED) // 叔叔存在且为红
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					// 继续往上处理
					cur = grandfater;
					parent = cur->_parent;
				}
				else // 叔叔不存在 或者 叔叔存在且为黑
				{
					if (cur == parent->_left) // 单旋
					{
						//     g
						//   p
						// c
						RotateR(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else // 双旋
					{
						//     g
						//   p
						//     c 
						RotateL(parent);
						RotateR(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
			else //(grandfater->_right == parent)
			{
				Node* uncle = grandfater->_left;
				// 情况一:
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					// 继续往上处理
					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_right)
					{
						// g
						//   p
						//     c 
						RotateL(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else // 双旋
					{
						// g
						//   p
						// c
						RotateR(parent);
						RotateL(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;

		return make_pair(iterator(newnode), true);
	}


	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parent == ppNode->_left)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppNode = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
	}

private:

	Node* _root = nullptr;
};

map

#pragma once

#include"RBTree.h"

namespace li
{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename RBTree<K, pair<K, V>, MapKeyOfT>::iterator iterator;
		typedef typename RBTree<K, pair<K, V>, MapKeyOfT>::const_iterator const_iterator;

		iterator begin()
		{
			return _t.Begin();
		}

		iterator end()
		{
			return _t.End();
		}

		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}

	private:
		RBTree<K, pair<K, V>, MapKeyOfT> _t;
	};

	void test_map1()
	{
		map<string, int> m;
		m.insert(make_pair("111", 1));
		m.insert(make_pair("555", 5));
		m.insert(make_pair("333", 3));
		m.insert(make_pair("222", 2));

		map<string, int>::iterator it = m.begin();
		while (it != m.end())
		{
			cout << it->first << ":" << it->second << endl;
			++it;
		}
		cout << endl;

		for (auto& kv : m)
		{
			cout << kv.first << ":" << kv.second << endl;
		}
		cout << endl;
	}

}

set

#pragma once

#include"RBTree.h"

namespace li
{
	template<class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;
		typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;

		iterator begin() const
		{
			return _t.Begin();
		}

		iterator end() const
		{
			return _t.End();
		}

		pair<iterator, bool> insert(const K& key)
		{
			//pair<typename RBTree<K, K, SetKeyOfT>::iterator, bool> ret = _t.Insert(key);
			auto ret = _t.Insert(key);
			return pair<iterator, bool>(iterator(ret.first._node), ret.second);
		}

		iterator find(const K& key)
		{
			return _t.Find(key);
		}
	private:
		RBTree<K, K, SetKeyOfT> _t;
	};

	void test_set1()
	{
		set<int> s;
		s.insert(8);
		s.insert(6);
		s.insert(11);
		s.insert(5);
		s.insert(6);
		s.insert(7);
		s.insert(10);
		s.insert(13);
		s.insert(12);
		s.insert(15);

		set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;

		for (auto e : s)
		{
			cout << e << " ";
		}
		cout << endl;
	}
}
本文含有隐藏内容,请 开通VIP 后查看

网站公告

今日签到

点亮在社区的每一天
去签到