人工神经网络回归分析,神经网络实现线性回归

发布于:2023-01-20 ⋅ 阅读:(2) ⋅ 点赞:(0) ⋅ 评论:(0)

bp神经网络预测和多元线性回归预测哪一个比较好?

预测模型可分为哪几类?

根据方法本身的性质特点将预测方法分为三类爱发猫 www.aifamao.com。1、定性预测方法根据人们对系统过去和现在的经验、判断和直觉进行预测,其中以人的逻辑判断为主,仅要求提供系统发展的方向、状态、形势等定性结果。

该方法适用于缺乏历史统计数据的系统对象。2、时间序列分析根据系统对象随时间变化的历史资料,只考虑系统变量随时间的变化规律,对系统未来的表现时间进行定量预测。

主要包括移动平均法、指数平滑法、趋势外推法等。该方法适于利用简单统计数据预测研究对象随时间变化的趋势等。

3、因果关系预测系统变量之间存在某种前因后果关系,找出影响某种结果的几个因素,建立因与果之间的数学模型,根据因素变量的变化预测结果变量的变化,既预测系统发展的方向又确定具体的数值变化规律。

扩展资料:预测模型是在采用定量预测法进行预测时,最重要的工作是建立预测数学模型。预测模型是指用于预测的,用数学语言或公式所描述的事物间的数量关系。

它在一定程度上揭示了事物间的内在规律性,预测时把它作为计算预测值的直接依据。因此,它对预测准确度有极大的影响。任何一种具体的预测方法都是以其特定的数学模型为特征。

预测方法的种类很多,各有相应的预测模型。趋势外推预测方法是根据事物的历史和现实数据,寻求事物随时间推移而发展变化的规律,从而推测其未来状况的一种常用的预测方法。

趋势外推法的假设条件是:(1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。

(2)假设所研究系统的结构、功能等基本保持不变,即假定根据过去资料建立的趋势外推模型能适合未来,能代表未来趋势变化的情况。由以上两个假设条件可知,趋势外推预测法是事物发展渐进过程的一种统计预测方法。

简言之,就是运用一个数学模型,拟合一条趋势线,然后用这个模型外推预测未来时期事物的发展。趋势外推预测法主要利用描绘散点图的方法(图形识别)和差分法计算进行模型选择。

主要优点是:可以揭示事物发展的未来,并定量地估价其功能特性。趋势外推预测法比较适合中、长期新产品预测,要求有至少5年的数据资料。组合预测法是对同一个问题,采用多种预测方法。

组合的主要目的是综合利用各种方法所提供的信息,尽可能地提高预测精度。

组合预测有2种基本形式,一是等权组合,即各预测方法的预测值按相同的权数组合成新的预测值;二是不等权组合,即赋予不同预测方法的预测值不同的权数。

这2种形式的原理和运用方法完全相同,只是权数的取定有所区别。根据经验,采用不等权组合的组合预测法结果较为准确。回归预测方法是根据自变量和因变量之间的相关关系进行预测的。

自变量的个数可以一个或多个,根据自变量的个数可分为一元回归预测和多元回归预测。同时根据自变量和因变量的相关关系,分为线性回归预测方法和非线性回归方法。

回归问题的学习等价于函数拟合:选择一条函数曲线使其很好的拟合已知数据且能很好的预测未知数据。参考资料:百度百科——预测模型参考资料:百度百科——定性预测。

用matlabBP神经网络做多元线性回归,求问各参数的拟合值怎么看?

这个要看你选择的激活函数,若是你的激活函数为非线性函数,那就不可能得到各参数的拟合值。如果你所选用的激活函数是线性函数,那么就可以先把输出的表达式写出来,即权向量和输入的矩阵乘积。

得到表达式后就可以得到相应参数的拟合值了。

数学建模的方法有哪些?

预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);归类判别:欧氏距离判别、fisher判别等;图论:最短路径求法 ;最优化:列方程组 用lindo或lingo软件解;其他方法:层次分析法马尔可夫链主成分析法等。

建模常用算法,仅供参考:蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时间=可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。

数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。

线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)。

图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。

动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。

最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。

网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。

一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。

数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。

图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。

求大神帮忙用matlab程序做BP神经网络预测

1、样本数据太少,用BP网络预测可能并非好选择。说不定用一般的回归分析效果更好。2、要对Y进行预测,需要知道2015年的影响因素X1~X7才行吧?

BP神经网络的参考程序:data = [ ...    2009 2102.13 108.69 1104.99 888.45 700.6 64.28 8204.5 17502.1    2010 2701.61 132.74 1456.64 1121.64 839.02 99.58 9100 20760.52    2011 3636.62 208.22 2002.1 1426.29 1111.12 123.09 10086.88 29286.8    2012 4164.32 229.05 2303.9 1631.37 1293.62 176.42 12005.115 33720.1    2013 4672.91 247.21 2583.75 1841.95 1480.84 181.9 13136.77 39131    2014 5157.97 257.63 2872.01 2028.33 1666.75 200.87 15110 42194    ];year = data(:,1);p = data(:,2:8).';t = data(:,9).';net = newff(p,t,10);net = train(net,p,t);y1 = sim(net,p(:,end))由于没有2015年的X1~X7数据,最后一句用2014年的数据进行测试。

如果用多元线性回归:c=regress(t',p')y2=c'*p(:,end)由于样本数量太少(少于影响因素的数量),这种情况下,实际上回归的结果可以几乎没有误差(只有数值误差)。

当然,用于预测是否准确要另当别论。

多元线性回归要不要有输入输出,像神经网络一样!

请问BP神经网络能像多元线性回归那样求出一个函数表达式式来吗?

神经网络挖掘模型与logistic回归挖掘模型的不同点有哪些?

逻辑回归有点像线性回归,但是它是当因变量不是数字时使用。比如说因变量是布尔变量(如是/否响应),这时候就需要逻辑回归。它称为回归,但实际上是是根据回归进行分类,它将因变量分类为两个类中的任何一个。

网页链接如上所述,逻辑回归用于预测二进制输出。例如,如果信用卡公司打算建立一个模型来决定是否向客户发放信用卡,它将模拟客户是否需要这张或者能够承担这张信用卡。

它给出了事件发生概率的对数,以记录未发生事件的概率。最后,它根据任一类的较高概率对变量进行分类。

而神经网络(NeutralNetwork)是通过数学算法来模仿人脑思维的,它是数据挖掘中机器学习的典型代表。

神经网络是人脑的抽象计算模型,我们知道人脑中有数以百亿个神经元(人脑处理信息的微单元),这些神经元之间相互连接,是的人的大脑产生精密的逻辑思维。

而数据挖掘中的“神经网络”也是由大量并行分布的人工神经元(微处理单元)组成的,它有通过调整连接强度从经验知识中进行学习的能力,并可以将这些知识进行应用。

神经网络就像是一个爱学习的孩子,您教她的知识她是不会忘记而且会学以致用的。我们把学习集(LearningSet)中的每个输入加到神经网络中,并告诉神经网络输出应该是什么分类。

在全部学习集都运行完成之后,神经网络就根据这些例子总结出她自己的想法,到底她是怎么归纳的就是一个黑盒了。

之后我们就可以把测试集(TestingSet)中的测试例子用神经网络来分别作测试,如果测试通过(比如80%或90%的正确率),那么神经网络就构建成功了。

我们之后就可以用这个神经网络来判断事务的分类了。具体来说,”神经网络“是一组互相连接的输入/输出单元,其中每个连接都会与一个券种相关联。

在学习阶段,通过调整这些连接的权重,就能够预测输入观测值的正确类标号。因此可以理解为人工神经网络是由大量神经网络元通过丰富完善的连接、抽样、简化和模拟而形成的一种信息处理系统。