什么是卷积神经网络算法,卷积神经网络运算公式

发布于:2023-01-22 ⋅ 阅读:(140) ⋅ 点赞:(0)

卷积公式指的是什么?

卷积公式是指两个函数f和g生成第三个函数的一种数学算子。表征函数f与经过翻转和平移的g的重叠部分的累积,如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是滑动平均的推广。

卷积公式特点在卷积神经网络中会用卷积函数表示重叠部分,这个重叠部分的面积就是特征,卷积公式是用来求随机变量和的密度函数pdf的计算公式,卷积公式是一种积分变换的数学方法,在许多方面得到了广泛应用。

用卷积公式解决试井解释中的问题,早就取得了很好成果,而反褶积直到最近Schroeter,Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。

卷积神经网络算法是什么?

一维构筑、二维构筑、全卷积构筑AI爱发猫 www.aifamao.com

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络(Shift-InvariantArtificialNeuralNetworks,SIANN)”。

卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparseconnection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。

具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。

卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。

卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weightsharing)。

权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。

卷积神经网络通俗理解

卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(FeedforwardNeuralNetworks),是深度学习(deeplearning)的代表算法之一。

卷积神经网络具有表征学习(representationlearning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariantclassification),因此也被称为“平移不变人工神经网络。

卷积神经网络中的池化是什么意思?

理论在于,图像中相邻位置的像素是相关的。对一幅图像每隔一行采样,得到的结果依然能看。

一、卷积神经网受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),YannLecun最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。

近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。

卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。

在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。

卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。

子采样也叫做池化(pooling),通常有均值子采样(meanpooling)和最大值子采样(maxpooling)两种形式。子采样可以看作一种特殊的卷积过程。

卷积和子采样大大简化了模型复杂度,减少了模型的参数。三、卷积神经网络的原理3.1神经网络首先介绍神经网络,这一步的详细可以参考资源1。简要介绍下。

神经网络的每个单元如下:对应的公式如下:其对应的公式如下:比较类似的,可以拓展到有2,3,4,5,…个隐含层。

神经网络的训练方法也同Logistic类似,不过由于其多层性,还需要利用链式求导法则对隐含层的节点进行求导,即梯度下降+链式求导法则,专业名称为反向传播。关于训练算法,本文暂不涉及。

如何计算卷积神经网络中接受野尺寸

感受野计算时有下面的几个情况需要说明:(1)第一层卷积层的输出特征图像素的感受野的大小等于滤波器的大小(2)深层卷积层的感受野大小和它之前所有层的滤波器大小和步长有关系(3)计算感受野大小时,忽略了图像边缘的影响,即不考虑padding的大小,关于这个疑惑大家可以阅读一下参考文章2的解答进行理解这里的每一个卷积层还有一个strides的概念,这个strides是之前所有层stride的乘积。

即strides(i)=stride(1)*stride(2)*...*stride(i-1)关于感受野大小的计算采用toptodown的方式,即先计算最深层在前一层上的感受野,然后逐渐传递到第一层,使用的公式可以表示如下: RF=1#待计算的featuremap上的感受野大小forlayerin(toplayerTodownlayer):RF=((RF-1)*stride)+fsizestride表示卷积的步长;fsize表示卷积层滤波器的大小用python实现了计算Alexnetzf-5和VGG16网络每层输出featuremap的感受野大小,实现代码:#!/usr/bin/envpythonnet_struct={'alexnet':{'net':[[11,4,0],[3,2,0],[5,1,2],[3,2,0],[3,1,1],[3,1,1],[3,1,1],[3,2,0]],'name':['conv1','pool1','conv2','pool2','conv3','conv4','conv5','pool5']},'vgg16':{'net':[[3,1,1],[3,1,1],[2,2,0],[3,1,1],[3,1,1],[2,2,0],[3,1,1],[3,1,1],[3,1,1],[2,2,0],[3,1,1],[3,1,1],[3,1,1],[2,2,0],[3,1,1],[3,1,1],[3,1,1],[2,2,0]],'name':['conv1_1','conv1_2','pool1','conv2_1','conv2_2','pool2','conv3_1','conv3_2','conv3_3','pool3','conv4_1','conv4_2','conv4_3','pool4','conv5_1','conv5_2','conv5_3','pool5']},'zf-5':{'net':[[7,2,3],[3,2,1],[5,2,2],[3,2,1],[3,1,1],[3,1,1],[3,1,1]],'name':['conv1','pool1','conv2','pool2','conv3','conv4','conv5']}}imsize=224defoutFromIn(isz,net,layernum):totstride=1insize=iszforlayerinrange(layernum):fsize,stride,pad=net[layer]outsize=(insize-fsize+2*pad)/stride+1insize=outsizetotstride=totstride*stridereturnoutsize,totstridedefinFromOut(net,layernum):RF=1forlayerinreversed(range(layernum)):fsize,stride,pad=net[layer]RF=((RF-1)*stride)+fsizereturnRFif__name__=='__main__':print"layeroutputsizesgivenimage=%dx%d"%(imsize,imsize)fornetin():print'************netstructruenameis%s**************'%netforiinrange(len(net_struct[net]['net'])):p=outFromIn(imsize,net_struct[net]['net'],i+1)rf=inFromOut(net_struct[net]['net'],i+1)print"LayerName=%s,Outputsize=%3d,Stride=%3d,RFsize=%3d"%(net_struct[net]['name'][i],p[0],p[1],rf)。

卷积神经网络用全连接层的参数是怎么确定的?

卷积神经网络用全连接层的参数确定:卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。

它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。

输入层卷积神经网络的输入层可以处理多维数据,常见地,一维卷积神经网络的输入层接收一维或二维数组,其中一维数组通常为时间或频谱采样;二维数组可能包含多个通道;二维卷积神经网络的输入层接收二维或三维数组;三维卷积神经网络的输入层接收四维数组。

由于卷积神经网络在计算机视觉领域应用较广,因此许多研究在介绍其结构时预先假设了三维输入数据,即平面上的二维像素点和RGB通道。

 

本文含有隐藏内容,请 开通VIP 后查看