YoloV8改进策略:下采样改进|自研下采样模块(独家改进)|附结构图

发布于:2024-04-03 ⋅ 阅读:(131) ⋅ 点赞:(0)

摘要

本文介绍我自研的下采样模块。稍后补充具体的改进方法。大家先看测试结果。

YoloV8官方结果

YOLOv8l summary (fused): 268 layers, 43631280 parameters, 0 gradients, 165.0 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 29/29 [
                   all        230       1412      0.922      0.957      0.986      0.737
                   c17        230        131      0.973      0.992      0.995      0.825
                    c5        230         68      0.945          1      0.995      0.836
            helicopter        230         43       0.96      0.907      0.951      0.607
                  c130        230         85      0.984          1      0.995      0.655
                   f16        230         57      0.955      0.965      0.985      0.669
                    b2        230          2      0.704          1      0.995      0.722
                 other        230         86      0.903      0.942      0.963      0.534
                   b52        230         70       0.96      0.971      0.978      0.831
                  kc10        230         62      0.999      0.984       0.99      0.847
               command        230         40       0.97          1      0.995      0.811
                   f15        230        123      0.891          1      0.992      0.701
                 kc135        230         91      0.971      0.989      0.986      0.712
                   a10        230         27          1      0.555      0.899      0.456
                    b1        230         20      0.972          1      0.995      0.793
                   aew        230         25      0.945          1       0.99      0.784
                   f22        230         17      0.913          1      0.995      0.725
                    p3        230        105       0.99          1      0.995      0.801
                    p8        230          1      0.637          1      0.995      0.597
                   f35        230         32      0.939      0.938      0.978      0.574
                   f18        230        125      0.985      0.992      0.987      0.817
                   v22        230         41      0.983          1      0.995       0.69
                 su-27        230         31      0.925          1      0.995      0.859
                 il-38        230         27      0.972          1      0.995      0.811
                tu-134        230          1      0.663          1      0.995      0.895
                 su-33        230          2          1      0.611      0.995      0.796
                 an-70        230          2      0.766          1      0.995       0.73
                 tu-22        230         98      0.984          1      0.995      0.831
Speed: 0.2ms preprocess, 3.8ms inference, 0.0ms loss, 0.8ms postprocess per image

改进后的测试结果

YOLOv8l summary (fused): 286 layers, 42157232 parameters, 0 gradients, 161.8 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 15/15 [00:03<00:00,  3.93it/s]
                   all        230       1412      0.965      0.973      0.991      0.751
                   c17        230        131      0.979      0.985      0.995      0.823
                    c5        230         68      0.957      0.973      0.993       0.82
            helicopter        230         43      0.953          1      0.982      0.628
                  c130        230         85       0.98      0.988      0.994      0.652
                   f16        230         57      0.992      0.947      0.989      0.676
                    b2        230          2      0.911          1      0.995      0.796
                 other        230         86      0.994      0.953      0.978      0.557
                   b52        230         70       0.97      0.986      0.987      0.839
                  kc10        230         62          1      0.981      0.989      0.848
               command        230         40      0.992          1      0.995      0.825
                   f15        230        123      0.958      0.992      0.994      0.708
                 kc135        230         91      0.997      0.989      0.991      0.715
                   a10        230         27          1        0.5      0.945      0.507
                    b1        230         20      0.991          1      0.995      0.728
                   aew        230         25      0.931          1      0.995      0.791
                   f22        230         17      0.986          1      0.995      0.778
                    p3        230        105          1      0.977      0.995      0.794
                    p8        230          1      0.848          1      0.995      0.796
                   f35        230         32      0.997          1      0.995      0.575
                   f18        230        125       0.99      0.992       0.99      0.822
                   v22        230         41      0.994          1      0.995      0.755
                 su-27        230         31      0.991          1      0.995      0.858
                 il-38        230         27       0.99          1      0.995      0.832
                tu-134        230          1      0.847          1      0.995      0.895
                 su-33        230          2      0.916          1      0.995       0.63
                 an-70        230          2      0.901          1      0.995      0.796
                 tu-22        230         98      0.998          1      0.995      0.829
Speed: 0.1ms preprocess, 6.2ms inference, 0.0ms loss, 0.4ms postprocess per image