【Week-Y4】修改yolov5s中C3模块的结构,common.py文件解读

发布于:2024-04-05 ⋅ 阅读:(221) ⋅ 点赞:(0)

📕本次任务:将yolov5s网络模型中C3模块中的结构按照如下方式修改,并跑通YOLOv5。
在这里插入图片描述
如左图,有3个conv模块,需要改为右图,右图只包含2个conv模块。
📕提示:仅需修改./models/common.py文件
📕步骤:
(1)首先找到coomon.py中定义C3模块的地方;
(2)然后将代码与上图的左图对应起来,观察需要改动的位置,结合结构,更容易看懂代码;
(3)找到之后按照要求修改,并运行train.py,看是否能跑通。

./models/common.py中,保存的是v5s各个模块的实现,包括基本模块(如autopad、Conv、Bottleneck、BottleneckCSP、C3、SPP、Concat、Expand和Contract)和重要模块(NMS、AutoShape、Detections、Classify)。

一、commom.py文件解析

yolov5-master的文件结构如下:

yolov5-master
|-classify
|-data
|-models (本次学习需要的文件在这里面)
	|-hub
	|-segment
	|-common.py(这是本次学习需要修改的文件,文件内容是yolov5s各个模块的定义)
	|-experi,emtal.py
	|-tf.py
	...
|-runs
|-segment
|-utils
...

打开common.py文件,找到定义C3模块的位置:

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group
        convolutions, and expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        """Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

这一段代码中定义了C3的模块结构,初始化时定义了3个卷积结构,然后在forward函数内部,给出了该模块的返回值,将返回值self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))拆解,并与给出的C3结构一一对应,得到下图:
在这里插入图片描述
由此可知,去掉concat后的卷积只需要将返回值的最外层丢掉即可。

二、修改代码,运行train.py训练

C3模块修改如下:【注释的那行是原来的结构,也就是concat后还经过了conv】
在这里插入图片描述
数据集:水果数据集 【使用week Y2的数据集】
命令行:python .\train.py --img 900 --batch 2 --epoch 100 --data .\fruit.yaml --cfg .\models\yolov5s.yaml --weights .\yolov5s.pt --device cpu【与week Y2的训练命令是一样的】

开始训练:
在这里插入图片描述


网站公告

今日签到

点亮在社区的每一天
去签到