STM32存储左右互搏 SDIO总线读写SD/MicroSD/TF卡

发布于:2024-04-09 ⋅ 阅读:(156) ⋅ 点赞:(0)

STM32存储左右互搏 SDIO总线读写SD/MicroSD/TF卡

SD/MicroSD/TF卡是基于FLASH的一种常见非易失存储单元,由接口协议电路和FLASH构成。市面上由不同尺寸和不同容量的卡,手机领域用的TF卡实际就是MicroSD卡,尺寸比SD卡小,而电路和协议操作则是一样。这里介绍STM32CUBEIDE开发平台HAL库SDIO总线操作SD/MicroSD/TF卡的例程。

SD/MicroSD/TF卡访问接口

SD/MicroSD/TF卡可以通过访问更快的SDIO专用协议接口或是访问慢一些的普通SPI接口进行操作,两种协议接口复用管脚。通过SDIO访问的接口连接方式如下:
在这里插入图片描述
其中CMD连接用于指示发送的是命令还是数据。CLK提供访问同步时钟,4根数据线(DATA0 ~ DATA3 )则实现信息双向传输。
SDIO可以操作在1bit数据线和4bit数据线模式,因为4bit数据线明显效率高于1bit数据线模式,所以1bit数据线模式很少用,只有在某种极限节省连接资源的情况下可以用1bit数据线模式,在1bit模式下,数据线DATA0用来传输数据,DATA1用作中断。在4bit数据线模式下,数据线DATA0~DATA3用于传输数据,其中DATA1复用作中断线。

例程采用STM32F103VET6芯片对4GB的TF卡进行操作,TF卡也可以插入转换卡套插入SD卡接口。

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置SDIO接口:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
配置使用DMA, 优先级可以根据需要调整:
在这里插入图片描述
配置UART1作为控制和打印输出接口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

UART串口printf打印输出实现参考:STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

对SD/MicroSD/TF卡的SDIO接口操作可以调用HAL库函数进行,代码实现在main.c文件里,实现如下功能:

  1. 串口收到0x01指令,查询SD/MicroSD/TF卡容量等信息
  2. 串口收到0x02指令,执行特定区域(块0)的擦除
  3. 串口收到0x03指令,阻塞模式执行写操作
  4. 串口收到0x04指令,阻塞模式执行读操作
  5. 串口收到0x05指令,中断模式执行写操作
  6. 串口收到0x06指令,中断模式执行读操作
  7. 串口收到0x07指令,DMA模式执行写操作
  8. 串口收到0x08指令,DMA模式执行读操作

完整的main.c代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "string.h"
#include "usart.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}


void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
//#define BLOCKSIZE   512U /*!< Block size is 512 bytes */
#define BLOCK_START_ADDR 0 /* Block start address */
#define NUM_OF_BLOCKS 1 /* Total number of blocks */
#define BUFFER_WORDS_SIZE ((BLOCKSIZE * NUM_OF_BLOCKS) >> 2) /* Total data size in bytes */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SD_HandleTypeDef hsd;
DMA_HandleTypeDef hdma_sdio;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */
uint8_t uart1_rxd[256];
uint8_t uart1_txd[256];
uint8_t cmd;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_SDIO_SD_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t SD_Buffer_Tx[512] = {0} ;
uint8_t SD_Buffer_Rx[512] = {0};

uint32_t SD_Status = 0;
uint32_t SD_Rx_Int = 0;
uint32_t SD_Tx_Int = 0;

void SD_DMA_INIT_M2P(SD_HandleTypeDef* hsd) //DMA init: memory --> peripheral
{
	HAL_DMA_DeInit(&hdma_sdio);
    /* SDIO DMA Init */
    /* SDIO Init */
    hdma_sdio.Instance = DMA2_Channel4;
    hdma_sdio.Init.Direction = DMA_MEMORY_TO_PERIPH;
    hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
    hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
    hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
    hdma_sdio.Init.Mode = DMA_NORMAL;
    hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
    if (HAL_DMA_Init(&hdma_sdio) != HAL_OK)
    {
      Error_Handler();
    }

    /* Several peripheral DMA handle pointers point to the same DMA handle.
     Be aware that there is only one channel to perform all the requested DMAs. */
    /* Be sure to change transfer direction before calling
     HAL_SD_ReadBlocks_DMA or HAL_SD_WriteBlocks_DMA. */
    __HAL_LINKDMA(hsd,hdmarx,hdma_sdio);
    __HAL_LINKDMA(hsd,hdmatx,hdma_sdio);
}

void SD_DMA_INIT_P2M(SD_HandleTypeDef* hsd) //DMA init: memory <-- peripheral
{
	HAL_DMA_DeInit(&hdma_sdio);
    /* SDIO DMA Init */
    /* SDIO Init */
    hdma_sdio.Instance = DMA2_Channel4;
    hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY;
    hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
    hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
    hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
    hdma_sdio.Init.Mode = DMA_NORMAL;
    hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
    if (HAL_DMA_Init(&hdma_sdio) != HAL_OK)
    {
      Error_Handler();
    }

    /* Several peripheral DMA handle pointers point to the same DMA handle.
     Be aware that there is only one channel to perform all the requested DMAs. */
    /* Be sure to change transfer direction before calling
     HAL_SD_ReadBlocks_DMA or HAL_SD_WriteBlocks_DMA. */
    __HAL_LINKDMA(hsd,hdmarx,hdma_sdio);
    __HAL_LINKDMA(hsd,hdmatx,hdma_sdio);
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_SDIO_SD_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  HAL_UART_Receive_IT(&huart1, uart1_rxd, 1);

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  /*HAL_SD_CARD_TRANSFER is the operate correct and complete status for SD card operation*/
	  if(cmd==0x01) //Get SD card information
	  {
		  cmd = 0;

		  printf("\r\n SD card test...\r\n");
		  if(HAL_SD_GetCardState(&hsd) == HAL_SD_CARD_TRANSFER) //Get SD card resource info
		  {
		      printf("\r\n Initialize SD card successful!\r\n");

		      printf(" SD card information↓ \r\n");
		      printf(" Card Capacity : %llu \r\n", (unsigned long long)hsd.SdCard.BlockSize * hsd.SdCard.BlockNbr);
		      printf(" One block size in bytes : %d \r\n", (int)hsd.SdCard.BlockSize);
		      printf(" Logical Capacity in blocks : %d \r\n", (int)hsd.SdCard.LogBlockNbr);
		  	  printf(" Logical block size in bytes : %d \r\n", (int)hsd.SdCard.LogBlockSize);
		      printf(" Relative Card Address : %d \r\n", (int)hsd.SdCard.RelCardAdd);
		      printf(" Card Type  : %d \r\n", (int)hsd.SdCard.CardType);

		      HAL_SD_CardCIDTypeDef sdcard_cid;
		      HAL_SD_GetCardCID(&hsd,&sdcard_cid); //Get SD card vendor info
		      printf(" Manufacturer ID: %d \r\n", (int)sdcard_cid.ManufacturerID);
		  }
		  else
		  {
		      printf("\r\n SD card initiation failed!\r\n" );
		  }
	  }
	  else if(cmd==0x02) //Erase SD card block
	  {
		  cmd = 0;

		  printf("\r\n------------------- Block Erase -------------------------------\r\n");
		  if(HAL_SD_Erase(&hsd, BLOCK_START_ADDR, NUM_OF_BLOCKS) == HAL_OK) //Erase block operation
		  {
		      while(HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) PY_Delay_us_t(10);
		      printf("\r\n Erase Block Successful!\r\n");
		  }
		  else
		  {
		      printf("\r\n Erase Block Failed!\r\n");
		  }
	  }
	  else if(cmd==0x03) //SD card write in block mode
	  {
		  cmd = 0;

		  memset(SD_Buffer_Tx, 0xAA, sizeof(SD_Buffer_Tx)); //0xAA written into buffer for this test
		  printf("\r\n------------------- Write SD card block data in block mode ------------------\r\n");
		  __disable_irq();
		  SD_Status = HAL_SD_WriteBlocks(&hsd, SD_Buffer_Tx, BLOCK_START_ADDR, NUM_OF_BLOCKS, 0xFFFFFFFF); //Write block operation in block mode

		  if(SD_Status==HAL_OK)
		  {
		      while(HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) PY_Delay_us_t(10); //Wait for write end

		      printf("\r\n Write block data in block mode successful!\r\n");
		  }
		  else
		  {
		      printf("\r\n Write block data in block mode failed!\r\n");
		  }
		  __enable_irq();
	  }
	  else if(cmd==0x04) //SD card read in block mode
	  {
		  cmd = 0;

		  printf("\r\n------------------- Read SD card block data in block mode ------------------\r\n");

		  __disable_irq();
		  SD_Status = HAL_SD_ReadBlocks(&hsd, SD_Buffer_Rx, BLOCK_START_ADDR, NUM_OF_BLOCKS, 0xFFFFFFFF); //read block operation in block mode

		  if( SD_Status== HAL_OK)
		  {
			  while(HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) PY_Delay_us_t(10); //Wait for read end

		      printf("\r\n Read block data in block mode successful!\r\n");
		      for(uint32_t i = 0; i < sizeof(SD_Buffer_Rx); i++)
		      {
		        printf("0x%02x:%02x ", (unsigned int)i, (unsigned int)SD_Buffer_Rx[i]);
		      }
		      printf("\r\n");
		  }
		  else
		  {
		      printf("\r\n Read block data in block mode failed!\r\n");
		  }
		  __enable_irq();
	  }
	  else if(cmd==0x05) //SD card write in INT mode
	  {
		  cmd = 0;

		  memset(SD_Buffer_Tx, 0x55, sizeof(SD_Buffer_Tx)); //0x55 written into buffer for this test
		  printf("\r\n------------------- Write SD card block data in INT mode ------------------\r\n");

		  SD_Tx_Int = 1;
		  SD_Status = HAL_SD_WriteBlocks_IT(&hsd, SD_Buffer_Tx, BLOCK_START_ADDR, NUM_OF_BLOCKS); //write block operation in INT mode
		  if(SD_Status== HAL_OK)
		  {
			  while(SD_Tx_Int==1) PY_Delay_us_t(1); //Wait for write end

		      printf("\r\n Write block data in INT mode successful!\r\n");
		  }
		  else
		  {
		      printf("\r\n Write block data in INT mode failed!\r\n");
		  }


	  }
	  else if(cmd==0x06) //SD card read in INT mode
	  {
		  cmd = 0;

		  printf("\r\n------------------- Read SD card block data in INT mode ------------------\r\n");

		  SD_Rx_Int = 1;
		  SD_Status = HAL_SD_ReadBlocks_IT(&hsd, SD_Buffer_Rx, BLOCK_START_ADDR, NUM_OF_BLOCKS); //read block operation in INT mode
		  if( SD_Status== HAL_OK)
		  {
			  while(SD_Rx_Int==1) PY_Delay_us_t(1); //Wait for read end

		      printf("\r\n Read block data in INT mode successful!\r\n");
		      for(uint32_t i = 0; i < sizeof(SD_Buffer_Rx); i++)
		      {
		        printf("0x%02x:%02x ", (unsigned int)i, (unsigned int)SD_Buffer_Rx[i]);
		      }
		      printf("\r\n");
		  }
		  else
		  {
		      printf("\r\n Read block data in INT mode failed!\r\n");
		  }
	  }
	  else if(cmd==0x07) //SD card write in DMA mode
	  {
		  cmd = 0;

		  SD_DMA_INIT_M2P(&hsd); //Switch DMA mode direction
		  memset(SD_Buffer_Tx, 0x5A, sizeof(SD_Buffer_Tx)); //0x5A written into buffer for this test

		  printf("\r\n------------------- Write SD card block data in DMA mode ------------------\r\n");

		  SD_Tx_Int = 1;
		  SD_Status = HAL_SD_WriteBlocks_DMA(&hsd, SD_Buffer_Tx, BLOCK_START_ADDR, NUM_OF_BLOCKS); //write block operation in DMA mode
		  if(SD_Status== HAL_OK)
		  {
			  while(SD_Tx_Int==1) PY_Delay_us_t(1); //Wait for write end

		      printf("\r\n Write block data in DMA mode successful!\r\n");
		  }
		  else
		  {

		      printf("\r\n Write block data in DMA mode failed!\r\n");
		  }
	  }
	  else if(cmd==0x08) //SD card read in DMA mode
	  {
		  cmd = 0;

		  SD_DMA_INIT_P2M(&hsd); //Switch DMA mode direction

		  printf("\r\n------------------- Read SD card block data in DMA mode ------------------\r\n");

		  SD_Rx_Int = 1;
		  SD_Status = HAL_SD_ReadBlocks_DMA(&hsd, SD_Buffer_Rx, BLOCK_START_ADDR, NUM_OF_BLOCKS); //read block operation in DMA mode
		  if( SD_Status== HAL_OK)
		  {
			  while(SD_Rx_Int==1) PY_Delay_us_t(1); //Wait for read end

		      printf("\r\n Read block data in DMA mode successful!\r\n");
		      for(uint32_t i = 0; i < sizeof(SD_Buffer_Rx); i++)
		      {
		        printf("0x%02x:%02x ", (unsigned int)i, (unsigned int)SD_Buffer_Rx[i]);
		      }
		      printf("\r\n");
		  }
		  else
		  {
		      printf("\r\n Read block data in DMA mode failed!\r\n");
		  }


	  }
	  else;
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SDIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_SDIO_SD_Init(void)
{

  /* USER CODE BEGIN SDIO_Init 0 */

  /* USER CODE END SDIO_Init 0 */

  /* USER CODE BEGIN SDIO_Init 1 */

  /* USER CODE END SDIO_Init 1 */
  hsd.Instance = SDIO;
  hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
  hsd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
  hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE;
  hsd.Init.BusWide = SDIO_BUS_WIDE_1B;
  hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_ENABLE;
  hsd.Init.ClockDiv = 6;
  if (HAL_SD_Init(&hsd) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SDIO_Init 2 */

  /* USER CODE END SDIO_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA2_Channel4_5_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Channel4_5_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
  if(huart==&huart1)
  {
	  cmd = uart1_rxd[0];
	  HAL_UART_Receive_IT(&huart1, uart1_rxd, 1);
  }
}

void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsd)
{
	SD_Tx_Int = 0;
}

void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsd)
{
	SD_Rx_Int = 0;
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32例程测试

串口指令0x01测试效果如下:
在这里插入图片描述
串口指令0x02测试效果如下:
在这里插入图片描述
串口指令0x03测试效果如下:
在这里插入图片描述
串口指令0x04测试效果如下:
在这里插入图片描述
串口指令0x05测试效果如下:
在这里插入图片描述
串口指令0x06测试效果如下:
在这里插入图片描述
串口指令0x07测试效果如下:
在这里插入图片描述
串口指令0x08测试效果如下:
在这里插入图片描述

STM32例程下载

STM32F103VET6 SDIO总线读写SD/MicroSD/TF卡例程下载

–End–


网站公告

今日签到

点亮在社区的每一天
去签到