Linux -- 日志

发布于:2024-05-11 ⋅ 阅读:(23) ⋅ 点赞:(0)

一 日志的重要性

  在之前的编程经历中,如果我们的程序运行出现了问题,都是通过 标准输出 或 标准错误 将 错误信息 直接输出到屏幕上,以此来排除程序中的错误。

  这在我们以往所写的程序中使用没啥问题,但如果出错的是一个不断在运行中的服务,那问题就大了,因为服务器是不间断运行中,直接将 错误信息 输出到屏幕上,会导致错误排查变得极为困难。

  其实,我们可以将各种 错误信息 组织管理,使 每种错误有属于自己的格式(包括时间、文件名及行号、错误等级等),利于排查问题,同时,把这些错误写入一个单独的地方,便于我们查找和阅读(因为错误信息繁多,我们一般写入文件中)。

  这种错误信息的集合,我们便称为日志。

所以接下来我们将会实现一个简易版日志器,用于定向输出我们的日志信息。

二 可变参数

日志需要我们指定格式并输出,依赖于可变参数。

因此我们需要认识一下可变参数的使用,主要是几个宏。

#include <stdarg.h>
 
va_list 	// 指向可变参数列表的指针

va_start()	// 将指针指向起始地址

va_arg()	// 根据类型,提取可变参数列表中的参数

va_end()	// 将指针置为空 

示例,我们通过可变参数实现参数遍历:
 

#include <stdio.h>
#include <stdarg.h>

void foreach(int format, ...){

    va_list p;
    va_start(p, format);

    // 接下来就是获取其中的每一个参数
    for(int i = 0; i < format; i++){
        printf("%d ", va_arg(p, int));
    }

    printf("\n");
    // 置空
    va_end(p);
}

int main(){
    foreach(5, 1,2,3,4,5);
    return 0;
}

这种依靠自己动手的方法比较麻烦,我们也可以借助标准库提供的 vsnprintf() 函数进行参数解析

//头文件:
#include <stdio.h>
//函数声明:
int vsnprintf(char* str, size_t size, const char* format, va_list ap);
  1. char *str ,  把生成的格式化的字符串存放在这里.
  2. size_t size , str可接受的最大字符数 ,防止产生数组越界.
  3. const char *format , 指定输出格式的字符串,它决定了你需要提供的可变参数的类型、个数和顺序。
  4. va_list ap , va_list变量. 

函数功能:将可变参数格式化输出到一个字符数组

返回值:执行成功,返回最终生成字符串的长度,若生成字符串的长度大于size,则将字符串的前size个字符复制到str,同时将原串的长度返回(不包含终止符);执行失败,返回负值,并置errno

#include<iostream>
#include<stdio.h>
#include <stdarg.h>

using namespace std;

void logtest(int format,...){

    va_list a;
    va_start(a,format);

    char msg[1024];
    int n = vsnprintf(msg,sizeof(msg),"%d-%d-%d-%d-%d",a);
    if(n < 0 ){
         cout<<"可变参数写入失败"<<endl;
    }
    
    cout<<msg<<endl;
    va_end(a);
}

int main(){

    logtest(5,1,2,3,4,5);
    return 0;
}

三 日志器的实现

3.1 日志器的等级

日志是有等级的,一般分为五级:

  1. Debug 用于调试
  2. Info 提示信息
  3. Warning 警告
  4. Errorr 错误
  5. Fatal 致命错误

错误等级越高,代表影响越大

当然难免有不明确的错误,可以再添加一级:UnKnow 未知错误。

#include<vector>
#include<string>

// 日志等级
enum
{
    Debug = 0,
    Info,
    Warning,
    Error,
    Fatal
};

string getLevel(int level){

   //可直接用一个容器存储这些日志等级
    vector<string> vs = {"<Debug>", "<Info>", "<Warning>", "<Error>", "<Fatal>", "<Unknown>"};
    
    //避免非法情况
    if(level < 0 || level >= vs.size() - 1)
        return vs[vs.size() - 1];
    
    return vs[level];
}

3.2 获取时间

  接下来是获取时间信息,可以通过 time() 函数获取当前时间戳,然后再利用 localtime() 函数构建 struct tm 结构体对象,这个对象会将时间戳解析成 年月日 时分秒 等详细信息,直接获取即可

  strcut tm 结构体的信息如下,细节:年份已经 -1900 了,使用时需要加上 1900;月份从 0 开始,使用时需要 +1。

/* Used by other time functions.  */
struct tm
{
  int tm_sec;			/* Seconds.	[0-60] (1 leap second) */
  int tm_min;			/* Minutes.	[0-59] */
  int tm_hour;			/* Hours.	[0-23] */
  int tm_mday;			/* Day.		[1-31] */
  int tm_mon;			/* Month.	[0-11] */
  int tm_year;			/* Year	- 1900.  */
  int tm_wday;			/* Day of week.	[0-6] */
  int tm_yday;			/* Days in year.[0-365]	*/
  int tm_isdst;			/* DST.		[-1/0/1]*/

# ifdef	__USE_BSD
  long int tm_gmtoff;		/* Seconds east of UTC.  */
  const char *tm_zone;		/* Timezone abbreviation.  */
# else
  long int __tm_gmtoff;		/* Seconds east of UTC.  */
  const char *__tm_zone;	/* Timezone abbreviation.  */
# endif
};

可以这样获取当前时间


// 获取当前时间
string getTime(){

    time_t t = time(nullptr);   //获取时间戳
    struct tm *st = localtime(&t);    //获取时间相关的结构体

    char buff[128];
    //将时间按照特定格式写入字符串中
    snprintf(buff, sizeof(buff), "%d-%d-%d %d:%d:%d", st->tm_year + 1900, st->tm_mon + 1, st->tm_mday, st->tm_hour, st->tm_min, st->tm_sec); 

    return buff;
}

3.3 日志格式

  日志的格式我们一般可以自己规定,这里我们规定我们日志的格式为:

<日志等级> [时间] [PID] {消息体}

  接下来就是获取进程 PID,这个简单,直接使用 getpid() 函数获取即可,最后是解析参数,需要用到 vsnprintf() 函数,只要传入缓冲区和 va_list 指针,该函数就可以自动解析出参数,并存入缓冲区中  。

void logMessage(int level, const char* format, ...){

    //截获主体消息
    char msgbuff[1024];
    va_list p;
    va_start(p, format);    //将 p 定位至 format 的起始位置
    vsnprintf(msgbuff, sizeof(msgbuff), format, p); //自动根据格式进行读取
    va_end(p);

}

形成测试版日志信息函数

//处理信息
void logMessage(int level, const char* format, ...){


    //日志格式:<日志等级> [时间] [PID] {消息体}
    string logmsg = getLevel(level);    //获取日志等级
    logmsg += " " + getTime();  //获取时间
    logmsg += " [" + to_string(getpid()) + "]";    //获取进程PID


    //截获主体消息
    char msgbuff[1024];
    va_list p;
    va_start(p, format);    //将 p 定位至 format 的起始位置
    vsnprintf(msgbuff, sizeof(msgbuff), format, p); //自动根据格式进行读取
    va_end(p);


    logmsg += " {" + string(msgbuff) + "}";    //获取主体消息
    printf("%s\n", logmsg); //这里先打印 方便进行测试

} 

  为什么日志消息最后还是向屏幕输出?这样组织日志消息的好处是什么?
  因为现在还在测试阶段,等测试完成后,可以将日志消息存入文件中,做到持久化存储;至于统一组织的好处不言而喻,能够确保每条日志消息都包含必要信息,便于排查错误

3.4 Log.hpp 头文件代码

#pragma once

#include <iostream>
#include <string>
#include <vector>
#include <cstdio>
#include <time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdarg.h>

using namespace std;

enum{
    
    Debug = 0,
    Info,
    Warning,
    Error,
    Fatal
};

string getLevel(int level){

    vector<string> vs = {"<Debug>", "<Info>", "<Warning>", "<Error>", "<Fatal>", "<Unknown>"};
    //避免非法情况
    if(level < 0 || level >= vs.size() - 1) {
      return vs[vs.size() - 1];
    }
    return vs[level];
}

string getTime(){

    time_t t = time(nullptr);   //获取时间戳
    struct tm *st = localtime(&t);    //获取时间相关的结构体

    char buff[128];
    snprintf(buff, sizeof(buff), "%d-%d-%d %d:%d:%d", st->tm_year + 1900, st->tm_mon + 1, st->tm_mday, st->tm_hour, st->tm_min, st->tm_sec);

    return buff;
}

//处理信息
void logMessage(int level, const char* format, ...){

    //日志格式:<日志等级> [时间] [PID] {消息体}
    string logmsg = getLevel(level);    //获取日志等级
    logmsg += " " + getTime();  //获取时间
    logmsg += " [" + to_string(getpid()) + "]";    //获取进程PID

    //截获主体消息
    char msgbuff[1024];
    va_list p;
    va_start(p, format);    //将 p 定位至 format 的起始位置
    vsnprintf(msgbuff, sizeof(msgbuff), format, p); //自动根据格式进行读取
    va_end(p);

    logmsg += " {" + string(msgbuff) + "}";    //获取主体消息

    cout<<logmsg<<endl;

} 

3.5 写入程序中

这里我们借用我们上一篇文章写的TCP程序

我们先将client.hpp 文件中的错误信息日志化:

//client.hpp
#pragma once 

#include<iostream>
#include<string>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<arpa/inet.h>
#include<cerrno>
#include<cstring>
#include "err.hpp"
#include <unistd.h>
#include"Log.hpp"

namespace My_client{

    class client
    {
    private:
        /* data */
        //套接字
        int _sock;
        //服务器ip
        std::string server_ip;
        //服务器端口号
        uint16_t server_port;
        
    public:

        client(const std::string &ip,const uint16_t &port)
         :server_ip(ip)
         ,server_port(port)
        {}

        ~client(){
        }

        //初始化客户端
        void InitClient(){
            //1 创建套接字
            _sock = socket(AF_INET,SOCK_STREAM,0);
            if(_sock == -1){
                logMessage(Fatal, "Create Socket Fail! %s", strerror(errno));
                exit(SOCKET_ERR);
            }
           logMessage(Debug, "Create Sock Succeess! %d", _sock);
        }

         // 启动客户端
        void StartClient(){
          
          //填充服务器的sockaddr_int 结构体信息
          struct sockaddr_in server;
          socklen_t len=sizeof(server);
          bzero(&server,len);

          server.sin_family = AF_INET;
          server.sin_addr.s_addr = inet_addr(server_ip.c_str());
         // inet_aton(server_ip.c_str(), &server.sin_addr); // 将点分十进制转化为二进制IP地址的另一种方法
          server.sin_port = htons(server_port);

          //尝试重连五次
          int n=5;
          while(n){
            //开始连接
            int ret = connect(_sock,(const struct sockaddr*)&server,len);
            if(ret==0){
               // 连接成功,可以跳出循环
               break;
            }
            // 尝试进行重连
           logMessage(Warning, "网络异常,正在进行重连... 剩余连接次数: %d", --n);
           sleep(1);
          }

          // 如果剩余重连次数为 0,证明连接失败
          if(n == 0) {
            logMessage(Fatal, "连接失败! %s", strerror(errno));
            close(_sock);
            exit(CONNECT_ERR);//新加错误标识符
          }

          // 连接成功
          logMessage(Info, "连接成功!");

         // 进行业务处理
          Service();
        }
        
     // 业务处理
     void Service(){
      
        char buff[1024];
        std::string who = server_ip + "-" + std::to_string(server_port);
        while(true){
          // 由用户输入信息
           std::string msg;
           std::cout << "Please Enter >> ";
           std::getline(std::cin, msg);
           // 发送信息给服务器
           write(_sock, msg.c_str(), msg.size());
             // 接收来自服务器的信息
           ssize_t n = read(_sock, buff, sizeof(buff) - 1);
           if(n > 0) {
             // 正常通信
             buff[n] = '\0';
             std::cout << "Client get: " << buff << " from " << who << std::endl;
          }
          else if(n == 0){
            // 读取到文件末尾(服务器关闭了)
           logMessage(Error, "Server %s quit! %s", who.c_str(), strerror(errno));
            close(_sock); // 关闭文件描述符
            break;
           }
           else{
            // 读取异常
            logMessage(Error, "Read Fail! %s", strerror(errno));
            close(_sock); // 关闭文件描述符
            break;
           }
        }
     }
    };
    
}

连接成功的例子,显然其它日志信息也一样显示在屏幕中:

改动server.hpp 头文件中的代码 

// server.hpp

#pragma once

#include<iostream>
#include<string>
#include<functional>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<arpa/inet.h>
#include"err.hpp"
#include<cstring>
#include<unistd.h>
#include<cerrno>
#include"ThreadPool.hpp"
#include"Task.hpp"
#include"Log.hpp"


namespace My_server{

    // 默认端口号
    const uint16_t default_port = 1111;
    //全连接队列的最大长度
    const int backlog = 32;
    using func_t = std::function<std::string(std::string)>;
    
    //前置声明
    class server;
    //包含我们所需参数的类型
    class ThreadData{

      public:
         ThreadData(int sock,const std::string&ip,const uint16_t&port,server*ptr)
          :_sock(sock)
          ,_clientip(ip)
          ,_clientport(port)
          ,_current(ptr)
         {}
      public:
        int _sock;
        std::string _clientip;
        uint16_t _clientport;
        server* _current;

    };

    class server
    {
    private:
        /* data */
        //套接字
        int _listensock;
        //端口号
        uint16_t _port;
        // 判断服务器是否结束运行
        bool _quit;
        // 外部传入的回调函数
        func_t _func;
    public:

        server(const func_t &func,const uint16_t &port = default_port)
         :_func(func)
         ,_port(port)
         ,_quit(false)
        {}

        ~server(){}

        //初始化服务器
        void InitServer(){
            //1 创建套接字
            _listensock = socket(AF_INET,SOCK_STREAM,0);
            if(_listensock == -1){
                //绑定失败
             logMessage(Fatal, "Create Socket Fail! %s", strerror(errno));
                exit(SOCKET_ERR);
            }
            logMessage(Debug, "Create Sock Succeess! %d", _listensock);

            //2 绑定端口号和IP地址
            struct sockaddr_in local;
            bzero(&local,sizeof(local));
            
            local.sin_family = AF_INET;
            local.sin_port = htons(_port);
            local.sin_addr.s_addr = INADDR_ANY;

            if(bind(_listensock,(const sockaddr*)&local,sizeof(local))){
                logMessage(Fatal, "Bind IP&&Port Fali %s", strerror(errno));
                exit(BIND_ERR);
            }

            //3 开始监听
            if(listen(_listensock,backlog)== -1){
                logMessage(Fatal, "Listen Fail: %s", strerror(errno));
                //新增一个报错
                exit(LISTEN_ERR);
            }
             logMessage(Debug, "Listen Success!");
        }
        //启动服务器
        void StartServer(){

            while(!_quit){
                //1 处理连接请求
                struct sockaddr_in client;
                socklen_t len = sizeof(client);
                int sock = accept(_listensock,(struct sockaddr*)&client,&len);

                //2 如果连接失败 继续尝试连接
                if(sock == -1){
                    logMessage(Warning,"Accept Fail!: %s",strerror(errno));
                    continue;
                }

                // 连接成功,获取客户端信息
                std::string clientip = inet_ntoa(client.sin_addr);
                uint16_t clientport = ntohs(client.sin_port);

                //std::cout<<"Server accept"<< clientip + "-"<< clientport <<sock<<" from "<<_listensock << "success!"<<std::endl;
                
                logMessage(Debug,"Server accept %s - %d %d from %d success",clientip.c_str(),clientport,sock,_listensock);

                 // 3.构建任务对象 注意:使用 bind 绑定 this 指针
                My_task::Task t(sock, clientip, clientport, std::bind(&server::Service, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3));

                // 4.通过线程池操作句柄,将任务对象 push 进线程池中处理
               //s
               //std::cout<<std::endl<<"push Task"<<std::endl;
                My_pool::ThreadPool<My_task::Task>::getInstance()->pushTask(t);
            }
        }

    
        void Service(int sock,const std::string &clientip,const uint16_t &clientport){

            char buff[1024];
            std::string who = clientip + "-" + std::to_string(clientport);
            
            while(true){
                // 以字符串格式读取,预留\0的位置
                ssize_t n = read(sock,buff,sizeof(buff)-1);
                if(n>0){
                    //读取成功
                    buff[n]='\0';
                    logMessage(Debug,"Server get: %s from %s",buff,who.c_str());
                    //std::cout<<"Server get: "<< buff <<" from "<<who<<std::endl;
                    //实际处理可以交给上层逻辑指定
                    std::string respond = _func(buff);
                    write(sock,buff,strlen(buff));
                }
                else if(n==0){
                  //表示当前读到了文件末尾,结束读取
                 //std::cout<<"Client "<<who<<" "<<sock<<" quit!"<<std::endl;
                 logMessage(Error,"Client %s %d quit!",who.c_str(),sock);
                 close(sock);
               }
                else{
                  // 读取出问题(暂时)
                logMessage(Error, "Read Fail! %s", strerror(errno));
                  close(sock); // 关闭文件描述符
                  break;
               }    
                            
            }
        }
    };
    
}

示例:

 3.6 持久化存储

所谓持久化存储就是将日志消息输出至文件中,修改 log.hpp 中的代码即可

  • 指定日志文件存放路径
  • 打开文件,将日志消息追加至文件中

log.hpp 日志头文件

#pragma once

#include <iostream>
#include <string>
#include <vector>
#include <cstdio>
#include <time.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdarg.h>

using namespace std;

enum{

    Debug = 0,
    Info,
    Warning,
    Error,
    Fatal
};

static const string file_name = "TCP.Log"; //在当前目录下创建一个TCP.Log文件

string getLevel(int level){

    vector<string> vs = {"<Debug>", "<Info>", "<Warning>", "<Error>", "<Fatal>", "<Unknown>"};
    //避免非法情况
    if(level < 0 || level >= vs.size() - 1) {
      return vs[vs.size() - 1];
    }
    return vs[level];
}

string getTime(){

    time_t t = time(nullptr);   //获取时间戳
    struct tm *st = localtime(&t);    //获取时间相关的结构体

    char buff[128];
    snprintf(buff, sizeof(buff), "%d-%d-%d %d:%d:%d", st->tm_year + 1900, st->tm_mon + 1, st->tm_mday, st->tm_hour, st->tm_min, st->tm_sec);

    return buff;
}

//处理信息
void logMessage(int level, const char* format, ...){

    //日志格式:<日志等级> [时间] [PID] {消息体}
    string logmsg = getLevel(level);    //获取日志等级
    logmsg += " " + getTime();  //获取时间
    logmsg += " [" + to_string(getpid()) + "]";    //获取进程PID

    //截获主体消息
    char msgbuff[1024];
    va_list p;
    va_start(p, format);    //将 p 定位至 format 的起始位置
    vsnprintf(msgbuff, sizeof(msgbuff), format, p); //自动根据格式进行读取
    va_end(p);

    logmsg += " {" + string(msgbuff) + "}";    //获取主体消息

    //持久化。写入文件中
    FILE* fp = fopen(file_name.c_str(), "a");   //以追加的方式写入
    if(fp == nullptr)
        return;   //不太可能出错


    fprintf(fp, "%s\n", logmsg.c_str());
    fflush(fp); //手动刷新一下
    fclose(fp);

} 

示例:


四 守护进程

守护进程 的意思就是让进程不间断的在后台运行,即便是 bash 关闭了,也能照旧运行。守护进程 就是现实生活中的服务器,因为服务器是需要 24H 不间断运行的

4.1.会话、进程组、进程

  当前我们的程序在启动后属于 前台进程前台进程 是由 bash 进程替换而来的,因此会导致 bash 暂时无法使用.

 但是我们的server程序此时又没什么用,还影响着原本bash进程的使用,我们该怎么做呢?

  如果在启动程序时,带上 & 符号,程序就会变成 后台进程后台进程 并不会与 bash 进程冲突,bash 仍然可以使用 

  后台进程 也可以实现服务器不间断运行,但问题在于 如果当前 bash 关闭了,那么运行中的后台进程也会被关闭,最好的解决方案是使用 守护进程

  在正式学习 守护进程 之前,需要先了解一组概念:会话、进程组、进程

  分别运行一批 前台、后台进程,并通过指令查看进程运行情况  。

sleep 1000 | sleep 2000 | sleep 3000 &

sleep 100 | sleep 200 | sleep 300

ps -ajx | head -1 && ps -ajx | grep sleep | grep -v grep

 

其中 会话 == SID

进程组 ==  PGID

进程 ==  PID

  显然,sleep 1000、2000、3000 处于同一个管道中(有血缘关系),属于同一个 进程组,所以他们的 PGID 都是一样的,都是 4261;

  至于 sleep 100、200、300 属于另一个 进程组,PGID 为 4308;再仔细观察可以发现 每一组的进程组 PGID 都与当前组中第一个被创建的进程 PID 一致,这个进程被称为 组长进程。

  无论是 后台进程 还是 前台进程都是从同一个 bash 中启动的,所以它们处于同一个 会话 中,SID 都是 1939,并且关联的 终端文件 TTY 都是 pts/1。

  会话 >= 进程组 >= 进程


Linux 中一切皆文件,终端文件也是如此,这里的终端其实就是当前 bash 输出结果时使用的文件(也就是屏幕,屏幕也是一个文件),终端文件位于 dev/pts 目录下,如果向指定终端文件中写入数据,那么对方也可以直接收到
(关联终端文件说白了就是打开了文件,一方写,一方读,不就是管道吗)

 

在同一个 bash 中启动前台、后台进程,它们的 SID 都是一样的,属于同一个 会话,关联了同一个 终端 (SID 其实就是 bash 的 PID

我们使用 XShell 等工具登录 Linux 服务器时,会在服务器中创建一个 会话bash),可以在该会话内创建 进程,当 进程 间有关系时,构成一个 进程组组长 进程的 PID 就是该 进程组 的 PGID。

  在同一个会话中,只允许一个前台进程在运行,默认是 bash,如果其他进程运行了,bash 就会变成后台进程(暂时无法使用),让出前台进程这个位置(后台进程与前台进程之前是可以进程切换)


如何将一个 后台进程 变成 前台进程?
首先通过指令查看当前 会话 中正在运行的 后台进程,获取 任务号

jobs

查看当前会话中所有的后台进程

接下来通过 任务号 将 后台进程 变成 前台进程,此时 bash 就无法使用了。  

fg 后台进程号

那如何将 前台进程 变成 后台进程 ?

首先是通过 ctrl + z 发送 19 号 SIGSTOP 信号,暂停正在运行中的 前台进程.

键盘输入 ctrl + z

然后通过 任务号,可以把暂停中的进程变成 后台进程.

4.2 守护进程化

一般网络服务器为了不受到用户登录重启的影响,会以 守护进程 的形式运行,有了上面那一批前置知识后,就可以很好的理解 守护进程 的本质了

守护进程:进程单独成一个会话,并且以后台进程的形式运行

说白了就是让服务器不间断运行,可以直接使用 daemon() 函数完成 守护进程化。

#include <unistd.h>

int daemon(int nochdir, int noclose);

参数解读:

  1. nochdir 改变进程的工作路径
  2. noclose 重定向标准输入、标准输出、标准错误

返回值:成功返回 0,失败返回 -1

一般情况下,daemon() 函数的两个参数都只需要传递 0,默认工作在 / 路径下,默认重定向至 /dev/null

/dev/null 就像是一个 黑洞,可以把所有数据都丢入其中,相当于丢弃数据

使用 damon() 函数使之前的server.cc 守护进程化

server.cc 服务器源文件

//智能指针头文件
#include<memory>
#include"server.hpp"
#include<string>

using namespace My_server;
// 业务处理回调函数(字符串回响)其实这里啥也不干
std::string echo(std::string request){
    return request;
}

int main(){
    
      // 直接守护进程化
    daemon(0, 0);
    std::unique_ptr<server> usvr(new server(echo));
     
    usvr->InitServer();
    
    usvr->StartServer();

    return 0;
}

   现在服务器启动后,会自动变成 后台进程,并且自成一个 新会话,归操作系统管(守护进程 本质上是一种比较坚强的 孤儿进程

  注意: 现在标准输出、标准错误都被重定向至 /dev/null 中了,之前向屏幕输出的数据,现在都会直接被丢弃,如果想保存数据,可以选择使用日志。

可见内容被吞噬了(舍弃) 

如果想终止 守护进程,需要通过 kill pid 杀死目标进程 。

  使用系统提供的接口一键 守护进程化 固然方便,不过大多数程序员都会选择手动 守护进程化(可以根据自己的需求定制操作)

  原理是 使用 setsid() 函数新设一个会话,谁调用,会话 SID 就是谁的,成为一个新的会话后,不会被之前的会话影响。

#include <unistd.h>

pid_t setsid(void);

返回值:成功返回该进程的 pid,失败返回 -1

注意: 调用该函数的进程,不能是组长进程,需要创建子进程后调用

手动实现守护进程时需要注意以下几点:

  1. 忽略异常信号
  2. 0、1、2 要做特殊处理(文件描述符)
  3. 进程的工作路径可能要改变(从用户目录中脱离至根目录)

具体实现步骤如下:

1、忽略常见的异常信号:SIGPIPE、SIGCHLD

2、如何保证自己不是组长? 创建子进程 ,成功后父进程退出,子进程变成守护进程

3、新建会话,自己成为会话的 话首进程

4、(可选)更改守护进程的工作路径:chdir

5、处理后续对于 0、1、2 的问题

对于 标准输入、标准输出、标准错误 的处理方式有两种

暴力处理:直接关闭 fd

优雅处理:将 fd 重定向至 /dev/null,也就是 daemon() 函数的做法

这里我们选择后者,守护进程 的函数实现如下:

Daemon.hpp 守护进程头文件

#pragma once

#include <iostream>
#include <cstring>
#include <cerrno>
#include <signal.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "err.hpp"
#include "Log.hpp"

static const char *path = "/home/Manta/cpp/Internet/Log/Log1";

void Daemon()
{
    // 1、忽略常见信号
    signal(SIGPIPE, SIG_IGN);
    signal(SIGCHLD, SIG_IGN);

    // 2、创建子进程,自己退休
    pid_t id = fork();
    if (id > 0)
        exit(0);
    else if (id < 0)
    {
        // 子进程创建失败
        logMessage(Error, "Fork Fail: %s", strerror(errno));
        exit(FORK_ERR);
    }

    // 3、新建会话,使自己成为一个单独的组
    pid_t ret = setsid();
    if (ret == -1)
    {
        // 守护化失败
        logMessage(Error, "Setsid Fail: %s", strerror(errno));
        exit(SETSID_ERR);
    }

    // 4、更改工作路径
    int n = chdir(path);
    if (n == -1)
    {
        // 更改路径失败
        logMessage(Error, "Chdir Fail: %s", strerror(errno));
        exit(CHDIR_ERR);
    }

    // 5、重定向标准输入输出错误
    int fd = open("/dev/null", O_RDWR);
    if (fd == -1)
    {
        // 文件打开失败
        logMessage(Error, "Open Fail: %s", strerror(errno));
        exit(OPEN_ERR);
    }

	// 重定向标准输入、标准输出、标准错误
    dup2(fd, 0);
    dup2(fd, 1);
    dup2(fd, 2);

    close(fd);
}

 

当然相应的错误码也需要更新

err.hpp 错误码头文件

#pragma once

enum
{
    USAGE_ERR = 1,
    SOCKET_ERR,
    BIND_ERR,
    LISTEN_ERR,
    CONNECT_ERR,
    FORK_ERR,
    SETSID_ERR,
    CHDIR_ERR,
    OPEN_ERR
};

StartServer() 服务器启动函数 — 位于 server.hpp 服务器头文件中

现在服务器在启动后,会自动新建会话,以 守护进程 的形式运行

杀死守护进程


网站公告

今日签到

点亮在社区的每一天
去签到