16、matlab求导、求偏导、求定积分、不定积分、数值积分和数值二重积分

发布于:2024-06-03 ⋅ 阅读:(160) ⋅ 点赞:(0)

1、matlab求导,diff()函数

1)一阶导数

语法:diff(f(x)):求一阶导数 //diff(f(x),n):求n阶导数(n为具体正整数)

以函数(cos(x)+sin(x)-x^2)的一阶导数为例

一阶导数代码:

yms x;%声明符号变量x
f(x)=cos(x)+sin(x)-x^2;%定义原式子
dy=diff(f(x))%求一阶导数
 
dy =
 
cos(x) - 2*x - sin(x)

2)n阶倒数

以函数(cos(x)+sin(x)-x^2)二三阶倒数为例

二三阶导数代码:

syms x;%声明符号变量x
f(x)=cos(x)+sin(x)-x^2;%定义原式子
dy1=diff(f(x),2)
% pretty(dy1)
dy2=diff(f(x),3)
 
dy1 =
 
- cos(x) - sin(x) - 2
 
 
dy2 =
 
sin(x) - cos(x)

2、matlab求偏导,diff()函数

语法:diff(f(x)):求一阶导数 //diff(f(x),n):求n阶导数(n为具体正整数)

以函数(f(x1,x2)=sin(x1)+exp(x2))求解x1和x2偏倒为例

1)一阶偏导

x1求偏导代码:

syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
%求一阶偏导
dy1=diff(f(x1,x2),x1)
 
dy1 =
 
cos(x1)

x2求偏导代码:

syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy2=diff(f(x1,x2),x2)
 
dy2 =
 
exp(x2)

2)n阶偏导

x1二阶偏导代码:

syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy3=diff(f(x1,x2),x1,2)
 
dy3 =
 
-sin(x1)

 x2三阶偏导代码:

syms x1 x2;%声明符号变量x1\x2
f(x1,x2)=sin(x1)+exp(x2);%定义原函数
dy4=diff(f(x1,x2),x2,3)
 
dy4 =
 
exp(x2)

3、matlab求积分,int()函数

1)不定积分求解

语法:牛顿——莱布尼兹公式求解积分

代码:

syms x;%声明变量x
y1=x^2;%定义原式
fy1=int(y1,x)%不定积分
 
fy1 =
 
x^3/3

2)定积分求解 

代码:

syms x;%声明变量x
y1=x^2;%定义原式
% fy1=int(y1,x)%不定积分
fy2=int(y1,x,0,1)%定积分
 
fy2 =
 
1/3


syms x;%声明变量x
y1=x^2;%定义原式
% fy1=int(y1,x)%不定积分
% fy2=int(y1,x,0,1)%定积分
fy3=int(y1,x,-inf,+inf)
 
fy3 =
 
Inf

 4、数值积分

1)梯形法计算积分 trapz()函数

语法:I=trapz(x,y) %适用于被积函数为离散数据

代码:

format long%显示格式设置
fy=@(x)sin(x)./x%@句柄的用法
x1=pi/6:pi/100:pi;
y1=fy(x1);
%绘图
bar(y1)
%定积分
s1=trapz(x1,y1)

fy =

  包含以下值的 function_handle:

    @(x)sin(x)./x


s1 =

   1.336217975152237

视图效果:

 2)基于变步长辛普森计算积分

语法:[I,n]=quad(‘fname’,a,b,Tol,trace)%I积分值/n积分函数调用次数

参数介绍fname:被积函数名 a,b积分界限 TOL精度 trace是否展现积分过程

基于变步长辛普森计算积分与梯形法计算积分对比代码:

fy=@(x)sin(x)./x%被积函数
s=quad(fy,pi/6,pi,0.00001,1)%变步长辛普森计算积分
x1=pi/6:pi/100:pi;
y1=fy(x1);
s1=trapz(x1,y1)%梯形法计算积分

fy =

  包含以下值的 function_handle:

    @(x)sin(x)./x

       9     0.5235987756     7.10994777e-01     0.6190188047
      11     1.2345935530     1.19600432e+00     0.6261906929
      13     2.4305978762     7.10994777e-01     0.0910383671

s =

   1.336247864730292


s1 =

   1.336217975152237

 5、数值二重积分 dblquad()函数

语法:I=dblquad(f,a,b,c,d,tol,method),求f(x,y)在[a,b]、[c,d]区域上的二重积分

TOL精度 Method:计算一维积分(quad/quadl) 

代码:

 f=@(x,y)exp(x.^2).*sin(x.^2+y.^2)
 I1=dblquad(f,-2,2,-1,1)
 I2=dblquad(f,-2,2,-1,1,1e-9,'quadl')
 I3=dblquad(f,-2,2,-1,1,1e-9,'quad')%默认

f =

  包含以下值的 function_handle:

    @(x,y)exp(x.^2).*sin(x.^2+y.^2)


I1 =

  -9.400793312509709


I2 =

  -9.400792842118586


I3 =

  -9.400792842296315

 6、数值积分 integral()函数

语法:q = integral(fun,xmin,xmax,Name,Value)

代码:

fun = @(x) exp(-x.^2).*log(x).^2;
q = integral(fun,0,Inf)
q1 = integral(fun,0,Inf,'RelTol',1e-9)

q =

   1.947522220295560


q1 =

   1.947522180314255

 7、二重积分 integral2()函数

语法:q = integral2(fun,xmin,xmax,ymin,ymax,Name,Value)

代码:

fun = @(x,y) 1./( sqrt(x + y) .* (1 + x + y).^2 );
q1= integral2(fun,0,1,0,1)
q2= integral2(fun,0,1,0,1,'RelTol',1e-9)

q1 =

   0.369530192486637


q2 =

   0.369530180500556


网站公告

今日签到

点亮在社区的每一天
去签到