神经网络 torch.nn---Linear Layers(nn.Linear)

发布于:2024-06-07 ⋅ 阅读:(97) ⋅ 点赞:(0)

torch.nn - PyTorch中文文档 (pytorch-cn.readthedocs.io)

torch.nn — PyTorch 2.3 documentation

nn.Linear

torch.nn.Linear(in_featuresout_featuresbias=Truedevice=Nonedtype=None)

参数:

  • in_features - 每个输入样本的大小
  • out_features - 每个输出样本的大小
  • bias - 若设置为False,这层不会学习偏置。默认值:True

形状:

  • 输入: (N,in_features)(N , in_features)
  • 输出: (N,out_features)(N , out_features)

变量:

  • weight -形状为(out_features x in_features)的模块中可学习的权值
  • bias -形状为(out_features)的模块中可学习的偏置

计算公式:

代码实例讲解

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)
# shuffle 是否打乱   False不打乱
# drop_last 最后一轮数据不够时,是否舍弃 true舍弃
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.linear1 = Linear(196608, 10)

    def forward(self, x):
        output = self.linear1(x)
        return output

tudui = Tudui()

for data in dataloader:
    imgs, targets = data
    print(imgs.shape)  #torch.Size([16, 3, 32, 32])
    output= torch.flatten(imgs)# output = torch.reshape(imgs,(1, 1, 1, -1))
    print(output.shape) #torch.Size([1, 1, 1, 196608])
    output = tudui.forward(output)
    print(output.shape)

部分输出结果:

 

torch.flatten() 和torch.reshape() 

output= torch.flatten(imgs)
output = torch.reshape(imgs,(1, 1, 1, -1))

以上两行代码都是将图像展开成一行

  • torch.flatten() 和torch.reshape() 的区别:

    • torch.flatten更方便,可以直接把图像变成一行

    • torch.reshape功能更强大,可任意指定图像尺寸


网站公告

今日签到

点亮在社区的每一天
去签到