import scipy
from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as sio
import matplotlib.pyplot as plt
import statistics as stats
import pandas as pd
from scipy.fft import fft, fftfreq, fftshift
from scipy import signal
from scipy.signal import savgol_filter
from scipy.signal.signaltools import wiener
def highfilter(input_signal):
#filtro: 'hp' high pass, 'low': low pass
b, a = signal.butter(3, 0.05, 'hp')
y = signal.filtfilt(b, a, input_signal)
return y
def lowfilter(input_signal):
#filtro: 'hp' high pass, 'low': low pass
b, a = signal.butter(3, 0.05, 'low')
y = signal.filtfilt(b, a, input_signal)
return y
HA1 = sio.loadmat('H-A-1.mat')
Channel1 = HA1['Channel_1']
canal1 = Channel1.T[0]
t = np.linspace(0, 9, len(canal1))
import numpy as np
import pandas as pd
import seaborn as sns
dataframe = pd.read_csv("statistics_10_hamming.csv" , sep = ',')
dataframe['Tipo'][dataframe['Tipo'].values == 'Sano'] = 'Healthy'
dataframe.rename(columns={'Tipo':'Type'},
inplace=True)
知乎学术咨询:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1
工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。