1、常数和基本初等函数的导数公式
公式 | 公式 |
---|---|
(1) ( C ) ′ = 0 (C)' = 0 (C)′=0 | (2) ( x μ ) ′ = μ x μ − 1 (x^{\mu})' = \mu x^{\mu - 1} (xμ)′=μxμ−1 |
(3) ( sin x ) ′ = cos x (\sin x)' = \cos x (sinx)′=cosx | (4) ( cos x ) ′ = − sin x (\cos x)' = - \sin x (cosx)′=−sinx |
(5) ( tan x ) ′ = sec 2 x (\tan x)' = \sec^2 x (tanx)′=sec2x | (6) ( cot x ) ′ = − csc 2 x (\cot x)' = - \csc^2 x (cotx)′=−csc2x |
(7) ( sec x ) ′ = sec x tan x (\sec x)' = \sec x \tan x (secx)′=secxtanx | (8) ( csc x ) ′ = − csc x cot x (\csc x)' = - \csc x \cot x (cscx)′=−cscxcotx |
(9) ( a x ) ′ = a x ln a (a^x)' = a^x \ln a (ax)′=axlna | (10) ( e x ) ′ = e x (\mathrm{e}^x)' = \mathrm{e}^x (ex)′=ex |
(11) ( log a x ) ′ = 1 x ln a (\log_a x)' = \cfrac{1}{x \ln a} (logax)′=xlna1 | (12) ( ln x ) ’ = 1 x (\ln x)’ = \cfrac{1}{x} (lnx)’=x1 |
(13) ( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)' = \cfrac{1}{\sqrt{1 - x^2}} (arcsinx)′=1−x21 | (14) ( arccos x ) ′ = − 1 1 − x 2 (\arccos x)' = - \cfrac{1}{\sqrt{1 - x^2}} (arccosx)′=−1−x21 |
(15) ( arctan x ) ’ = 1 1 + x 2 (\arctan x)’ = \cfrac{1}{1 + x^2} (arctanx)’=1+x21 | (16) ( arccot x ) ’ = − 1 1 + x 2 (\operatorname{arccot} x)’ = - \cfrac{1}{1 + x^2} (arccotx)’=−1+x21 |
2、函数的和、差、积、商的求导法则
设 u = u ( x ) , v = v ( x ) u = u(x), v = v(x) u=u(x),v=v(x) 都可导,则
(1) ( u ± v ) ′ = u ′ ± v ′ (u \pm v)' = u' \pm v' (u±v)′=u′±v′
(2) ( C u ) ′ = C u ′ ( C 是常数 ) (C u)' = C u' (C是常数) (Cu)′=Cu′(C是常数)
(3) ( u v ) ′ = u ′ v + u v ′ (u v)' = u' v + u v' (uv)′=u′v+uv′
(4) ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) \left( \cfrac{u}{v} \right)' = \cfrac{u' v - u v'}{v^2} (v \neq 0) (vu)′=v2u′v−uv′(v=0)
3、反函数的求导法则
设 x = f ( y ) x = f(y) x=f(y) 在区间 I y I_y Iy 内单调、可导且 f ′ ( y ) ≠ 0 f' (y) \neq 0 f′(y)=0 ,则它的反函数 y = f − 1 ( x ) y = f^{-1} (x) y=f−1(x) 在 I x = f ( I y ) I_x = f(I_y) Ix=f(Iy) 内也可导,且
[ f − 1 ( x ) ] ′ = 1 f ′ ( y ) 或 d y d x = 1 d x d y . [f^{-1}(x)]' = \cfrac{1}{f'(y)} \quad 或 \quad \cfrac{\mathrm d y}{\mathrm d x} = \cfrac{1}{\frac{\mathrm d x}{\mathrm d y}} . [f−1(x)]′=f′(y)1或dxdy=dydx1.
4、复合函数的求导法则
设 y = f ( u ) y = f(u) y=f(u) ,而 u = g ( x ) u = \mathrm g (x) u=g(x) 且 f ( u ) f(u) f(u) 及 g ( x ) \mathrm g (x) g(x) 都可导,则复合函数 y = f [ g ( x ) ] y = f[\mathrm g (x)] y=f[g(x)] 的导数为
d y d x = d y d u ⋅ d u d x 或 y ′ ( x ) = f ′ ( u ) g ′ ( x ) . \cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{\mathrm{d}y}{\mathrm{d}u} \cdot \cfrac{\mathrm{d}u}{\mathrm{d}x} \quad 或 \quad y'(x) = f'(u) \mathrm{g} '(x) . dxdy=dudy⋅dxdu或y′(x)=f′(u)g′(x).
例 设 y = sin n x ⋅ sin n x y = \sin{nx} \cdot \sin^n x y=sinnx⋅sinnx ( n n n 为常数),求 y ′ y' y′ .
解首先应用积的求导法则得
y ′ = ( sin n x ) ′ ⋅ sin n x + sin n x ⋅ ( sin n x ) y' = (\sin{nx})' \cdot \sin^n x + \sin{nx} \cdot (\sin^n x) y′=(sinnx)′⋅sinnx+sinnx⋅(sinnx)
在计算 ( sin n x ) ′ (\sin{nx})' (sinnx)′ 与 ( sin n x ) ′ (\sin^n x)' (sinnx)′ 时,都要应用复合函数的求导法则,由此得
y ′ = n cos n x ⋅ sin n x + sin n x ⋅ n sin n − 1 x ⋅ cos x = n sin n − 1 x ( cos n x ⋅ sin x + sin n x ⋅ cos x ) = n sin n − 1 x ⋅ sin ( n + 1 ) x \begin{align*} y' &= n \cos{nx} \cdot \sin^n x + \sin{nx} \cdot n \sin^{n - 1} x \cdot \cos x \\ &= n \sin^{n - 1} x (\cos{nx} \cdot \sin x + \sin{nx} \cdot \cos x) \\ &= n \sin^{n - 1} x \cdot \sin{(n + 1) x} \end{align*} y′=ncosnx⋅sinnx+sinnx⋅nsinn−1x⋅cosx=nsinn−1x(cosnx⋅sinx+sinnx⋅cosx)=nsinn−1x⋅sin(n+1)x
原文链接:高等数学 2.2 函数的求导法则