【小白学机器学习38】用np.random 生成各种随机数,随机数数组/序列

发布于:2024-11-29 ⋅ 阅读:(24) ⋅ 点赞:(0)

目录

0 总结 np.random() 的一些点

1 用np.random.random() 生成[0,1) 区间内的随机数

2 生成指定范围内的随机整数/数组 np.random.randint()

3 用np.random.choice()生成指定数组范围内的随机数

3.1 np.random.choice(array6)

3.2 np.random.choice(array6) ,需要设置是否允许循环抽样

4 np.random.normal()生成符合正态分布的数/数组

5 np.random.binomial()生成符合二项分布的数

6 上述的图

7 全部代码和效果


准备工作

先看python相关的随机,生成各种随机数

0 总结 np.random() 的一些点

  • np.random() 主要是生成符合各种要求的随机数
  1. 比如[0,1)
  2. 符合某分布,正态分布,二项分布等
  3. 指定某区间内随机等,比如(a,b) 之间,或者在某个array([1,10,99]) 之间
  • np.random() 可以不指定size,就只生成一个随机数。
  • 如果像生成一个数组,np.random() 都接受 size=10 这个参数,方便生成多个符合要求的随机数,一个数组
  1. size参数不是必须的,如果没有默认就是只生成1个随机数
  2. np.random.random()
  3. np.random.random(size=10)

1 用np.random.random() 生成[0,1) 区间内的随机数

  • np.random 能生成[0,1)这种标准化随机数数组
  • np.random.random()
  • np.random.random(size=10)
# np.random 能生成[0,1)这种标准化随机数数组
array2=np.random.random(size=10)
print(f"标准化[0,1)范围内随机数数组:{array2}")

2 生成指定范围内的随机整数/数组 np.random.randint()

  • #生成范围内的随机整数int数组
  • np.random.randint(1,10, size=10)
#生成范围内的随机整数int数组
array1=np.random.randint(1,10, size=10)
print(f"指定整数内随机int数组:{array1}")

3 用np.random.choice()生成指定数组范围内的随机数

3.1 np.random.choice(array6)

  • np.random 从指定数组里去随机选择
  • list6=[1,2,3,4,5,6,7,8,9,10]
  • array6=np.array(list6)
  • 可以用
  • np.random.choice(array6)

3.2 np.random.choice(array6) ,需要设置是否允许循环抽样

  • replace=True,可以允许抽样
  • replace=False,不允许抽样
  • array61=np.random.choice(array6,size=5,replace=True)
  • array62=np.random.choice(array6,size=5,replace=False)
# np.random 从指定数组里去随机选择
list6=[1,2,3,4,5,6,7,8,9,10]
array6=np.array(list6)

array61=np.random.choice(array6,size=5,replace=True)
print(f"指定数组内选择,可重复:{array61}")
print()

array62=np.random.choice(array6,size=5,replace=False)
print(f"指定数组内选择,不可重复:{array62}")
print()

4 np.random.normal()生成符合正态分布的数/数组

  • np.random.normal()
  • 能生成正态分布,二项分布等各种分布的随机数数组(序列)

  • #无参数默认是标准正态分布,默认只生成1个数
  • array3=np.random.normal(size=10)        
  • #array3=np.random.normal(loc=0.0, scale=1.0) #效果和上面缺省相同

  • 其中loc=mean 是均值
  • 其中scale=std 是标准差,
  • size= 数量
  • array4=np.random.normal(loc=2, scale=5, size=10) #loc=mean,scale=std, size=num
# np.random 能生成正态分布,二项分布等各种分布的随机数数组(序列)
array3=np.random.normal(size=10)        #无参数默认是标准正态分布,默认只生成1个数
#array3=np.random.normal(loc=0.0, scale=1.0) #效果和上面缺省相同
print(f"符合标准正态分布数组:{array3}")
print()

array4=np.random.normal(loc=2, scale=5, size=10) #loc=mean,scale=std, size=num
print(f"符合正态分布数组:{array4}")
print()

5 np.random.binomial()生成符合二项分布的数

  • np.random.binomial()
  • np.random.binomial(n=10, p=0.5, size=10)

# np.random 能生成正态分布,二项分布等各种分布的随机数数组(序列)
array5=np.random.binomial(n=10, p=0.5, size=10)
print(f"二项分布数组:{array5}")
print()

6 上述的图

7 全部代码和效果

import numpy as np
import pandas as pd
import scipy as sp
from matplotlib import pyplot as plt
import seaborn as sns
%precision 3

fig=plt.figure()


#生成范围内的随机整数int数组
array1=np.random.randint(1,10, size=10)
print(f"指定整数内随机int数组:{array1}")
plt.subplot(3, 3, 1)
plt.plot(array1)
print()

# np.random 能生成[0,1)这种标准化随机数数组
array2=np.random.random(size=10)
print(f"标准化[0,1)范围内随机数数组:{array2}")
plt.subplot(3, 3, 2)
plt.plot(array2)
print()

# np.random 能生成正态分布,二项分布等各种分布的随机数数组(序列)
array3=np.random.normal(size=10)        #无参数默认是标准正态分布,默认只生成1个数
#array3=np.random.normal(loc=0.0, scale=1.0) #效果和上面缺省相同
print(f"符合标准正态分布数组:{array3}")
plt.subplot(3, 3, 3)
plt.plot(array3)
print()

array4=np.random.normal(loc=2, scale=5, size=10) #loc=mean,scale=std, size=num
print(f"符合正态分布数组:{array4}")
plt.subplot(3, 3, 4)
plt.plot(array4)
print()


# np.random 能生成正态分布,二项分布等各种分布的随机数数组(序列)
array5=np.random.binomial(n=10, p=0.5, size=10)
print(f"二项分布数组:{array5}")
plt.subplot(3, 3, 5)
plt.plot(array5)
print()


# np.random 从指定数组里去随机选择
list6=[1,2,3,4,5,6,7,8,9,10]
array6=np.array(list6)
plt.subplot(3, 3, 6)
plt.plot(array6)
print()

array61=np.random.choice(array6,size=5,replace=True)
print(f"指定数组内选择,可重复:{array61}")
plt.subplot(3, 3, 7)
plt.plot(array61)
print()

array62=np.random.choice(array6,size=5,replace=False)
print(f"指定数组内选择,不可重复:{array62}")
plt.subplot(3, 3, 8)
plt.plot(array62)
print()