- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊
1.检查GPU
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
2.查看数据
import os,PIL,random,pathlib
data_dir='data/46-data'
data_dir=pathlib.Path(data_dir)
data_paths=list(data_dir.glob('*'))
classNames=[str(path).split('\\')[2]for path in data_paths]
classNames
3.划分数据集
train_transforms = transforms.Compose([
transforms.Resize([224, 224]),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.Resize([224, 224]),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder("data/46-data/train/",transform=train_transforms)
test_dataset = datasets.ImageFolder("data/46-data/test/",transform=test_transform)
train_dataset.class_to_idx
batch_size=32
train_dl=torch.utils.data.DataLoader(train_dataset,
batch_size,shuffle=True,num_workers=1)
test_dl=torch.utils.data.DataLoader(test_dataset,batch_size,shuffle=True,num_workers=1)
for X,y in test_dl:
print(X.shape)
print(y.shape)
break
4.构建模型
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1=nn.Sequential(
nn.Conv2d(3, 12, kernel_size=5, padding=0),
nn.BatchNorm2d(12),
nn.ReLU())
self.conv2=nn.Sequential(
nn.Conv2d(12, 12, kernel_size=5, padding=0),
nn.BatchNorm2d(12),
nn.ReLU())
self.pool3=nn.Sequential(
nn.MaxPool2d(2))
self.conv4=nn.Sequential(
nn.Conv2d(12, 24, kernel_size=5, padding=0),
nn.BatchNorm2d(24),
nn.ReLU())
self.conv5=nn.Sequential(
nn.Conv2d(24, 24, kernel_size=5, padding=0),
nn.BatchNorm2d(24),
nn.ReLU())
self.pool6=nn.Sequential(
nn.MaxPool2d(2))
self.dropout = nn.Sequential(
nn.Dropout(0.2))
self.fc=nn.Sequential(
nn.Linear(24*50*50, len(classNames)))
def forward(self, x):
batch_size = x.size(0)
x = self.conv1(x)
x = self.conv2(x)
x = self.pool3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.pool6(x)
x = self.dropout(x)
x = x.view(batch_size, -1)
x = self.fc(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Model().to(device)
model
5.动态调整学习率函数
def adjust_learning_rate(optimizer,epoch,start_lr):
lr=start_lr*(0.92**(epoch//2))
for param_group in optimizer.param_groups:
param_group['lr']=lr
learn_rate=1e-4
optimizer=torch.optim.SGD(model.parameters(),lr=learn_rate)
6.编译及训练模型
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_loss, train_acc = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, test_acc = 0, 0
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
target_pred = model(imgs)
loss = loss_fn(target_pred, target
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
7.结果可视化
import matplotlib.pyplot as plt
# 绘制训练和测试的损失与准确率变化趋势
plt.figure(figsize=(12, 5))
# 绘制损失变化趋势
plt.subplot(1, 2, 1)
plt.plot(range(1, epochs + 1), train_losses, label='Train Loss')
plt.plot(range(1, epochs + 1), test_losses, label='Test Loss', linestyle='--')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Loss over Epochs')
plt.legend()
# 绘制准确率变化趋势
plt.subplot(1, 2, 2)
plt.plot(range(1, epochs + 1), [acc * 100 for acc in train_accuracies], label='Train Accuracy')
plt.plot(range(1, epochs + 1), [acc * 100 for acc in test_accuracies], label='Test Accuracy', linestyle='--')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.title('Accuracy over Epochs')
plt.legend()
plt.tight_layout()
plt.show()
8.预测本地图片
from PIL import Image
classes=list(train_dataset.class_to_idx)
def predict_one_image(image_path,model,transdform,classes):
test_img=Image.open(image_path).convert('RGB')
test_img=transdform(test_img)
img=test_img.to(device).unsqueeze(0)
model.eval()
output=model(img)
_,pred=torch.max(output,1)
pred_class=classes[pred]
print(f'结果是{pred_class}')
predict_one_image(image_path='data/46-data/test/adidas/1.jpg',model=model,transdform=train_transforms,classes=classes)
PATH='./model.pth'
torch.save(model.state_dict(),PATH)
model.load_state_dict(torch.load(PATH,map_location=device))
总结:
1.动态学习率
1.torch.optim.lr_scheduler.StepLR
等间隔动态调整方法,每经过step_size个epoch,做一次学习率decay,以gamma值为缩小倍数。
函数原型:
torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)
- optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
- step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
- gamma(float):学习率衰减的乘法因子。Default:0.1
2.lr_scheduler.LambdaLR
根据自己定义的函数更新学习率。
optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
函数原型:
torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)
- optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
- lr_lambda(function):更新学习率的函数
lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二组参数的调整方法
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法
3.lr_scheduler.MultiStepLR
在特定的 epoch 中调整学习率
函数原型:
torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)
- optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
- milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列
- gamma(float):学习率衰减的乘法因子。Default:0.1
2.保存最优模型参数到本地
PATH='./model.pth'
torch.save(model.state_dict(),PATH)
3.使用本地模型参数预测本地图片
from PIL import Image
classes=list(train_dataset.class_to_idx)
def predict_one_image(image_path,model,transdform,classes):
test_img=Image.open(image_path).convert('RGB')
test_img=transdform(test_img)
img=test_img.to(device).unsqueeze(0)
model.eval()
output=model(img)
_,pred=torch.max(output,1)
pred_class=classes[pred]
print(f'结果是{pred_class}')