目录
1、Troch
函数 | 说明 | 举例 |
---|---|---|
torch.tensor() torch.arange() |
创建张量 | 创建一个标量:torch.tensor(42) 创建一个一维张量:torch.tensor([1, 2, 3]) 创建一个二维张量:torch.tensor([[1, 2], [3, 4]]) 生成一维等差张量:语法:torch.arange(start=0, end, step=1, *, dtype=None, device=None, requires_grad=False) torch.arange(3)就是tensor([0, 1, 2]) |
torch.view() | 改变张量的形状 | 1行8列改2行4列:torch.arange(1, 9).view(2, 4) |
torch.cat() | 指定维度拼接张量 | torch.cat((torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6]])), dim=0) # tensor([[1, 2], [3, 4], [5, 6]]) |
索引与切片 | 和numpy数组用法一致 | |
tensor.t() | 张量转置 | torch.tensor([[1, 2, 3], [4, 5, 6]]).t() tensor([[1, 4], [2, 5], [3, 6]]) |
torch.mm() | 矩阵乘法 | torch.mm(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6], [7, 8]])) # tensor([[19, 22], [43, 50]]) |
torch.mul() | 元素级乘法 | torch.mul(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6], [7, 8]])) # tensor([[ 5, 12], [21, 32]]) |
torch.sum() | 求和 | torch.sum(torch.tensor([[1, 2], [3, 4]])) # tensor(10) |
import torch, math
import torch.nn as nn
import torch.optim as optim
# torch.tensor()
print(torch.tensor(42)) # 创建一个标量(零维张量),tensor(42)
print(torch.tensor([1,2,3])) # 创建一个一维张量,tensor([1, 2, 3])
print(torch.tensor([[1,2],[3,4]])) # 创建一个二维张量,tensor([[1, 2], [3, 4]])
# torch.arange(),一维等差张量
print(torch.arange(1,5)) # tensor([2, 3, 4])
print(torch.arange(3)) # tensor([0, 1, 2])
# tensor1.view() 改变形状
tensor1 = torch.arange(1, 9) # tensor1 = tensor([1, 2, 3, 4, 5, 6, 7, 8])
print(tensor1.view(2, 4)) # 或者 tensor1.view(-1, 4)、tensor1.view(2, -1):tensor([[1, 2, 3, 4], [5, 6, 7, 8]])
# torch.cat() 拼接
print(torch.cat((torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6]])), dim=0))
# 上面就是按照第0个维度拼接(就是第1维度不变,例如[1,2]拼接前后一致)tensor([[1, 2], [3, 4], [5, 6]])
# 索引和切片
tensor1 = torch.tensor([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]])
print(tensor1[0, :]) # 获取第一行:tensor([1, 2, 3, 4, 5, 6])
print(tensor1[0, 0:3]) # 获取第一行从索引0开始,到索引3(不包括3)的元素:tensor([1, 2, 3])
print(tensor1[0, 0:3:2]) # 获取第一行,且从索引0开始,到索引3(不包括3),步长为2的元素:tensor([1, 3])
print(tensor1[:, 0]) # 获取第一列:tensor([1, 7])
print(tensor1[1:, 1:]) # 获取子集:tensor([[ 8, 9, 10, 11, 12]])
# torch.t() 转置
print(torch.tensor([[1, 2, 3], [4, 5, 6]]).t()) # tensor([[1, 4], [2, 5], [3, 6]])
# torch.mm() 矩阵乘法
print(torch.mm(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6], [7, 8]]))) # tensor([[19, 22], [43, 50]])
# torch.mul() 元素级乘法
print(torch.mul(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[5, 6], [7, 8]]))) # tensor([[ 5, 12], [21, 32]])
# torch.sum() 求和
print(torch.sum(torch.tensor([[1, 2], [3, 4]]))) # tensor(10)
# torch.mean() 求均值
print(torch.mean(torch.tensor([[1.0, 2.0], [3.0, 4.0]]))) # tensor(2.5000)
# torch.std() 求标准差
print(torch.std(torch.tensor([[1.0, 2.0], [3.0, 4.0]]))) # tensor(2.2910) 即:((1-2)**2 + (2-2)**2 + (3-2)**2 + (4-2)**2)**0.5
# torch.max()、torch.min() 求最大值、最小值及其索引
print(torch.max(torch.tensor([[1.0, 2.0], [3.0, 4.0]]))) # tensor(4.)
print(torch.max(torch.tensor([[1.0, 2.0], [3.0, 4.0]]), dim=1)) # torch.return_types.max( values=tensor([2., 4.]), indices=tensor([1, 1]))
print(torch.min(torch.tensor([[1.0, 2.0], [3.0, 4.0]]))) # tensor(1.)
# torch.abs() 绝对值
print(torch.abs(torch.tensor([[-1, 2], [-3, 4]]))) # tensor([[1, 2], [3, 4]])
# torch.exp() 指数运算,就是e^x
print(torch.exp(torch.tensor([[1.0, 2.0], [3.0, 4.0]]))) # tensor([[ 2.7183, 7.3891], [20.0855, 54.5981]])
# torch.log() 对数运算,就是 ln2≈0.6931
print(torch.log(torch.tensor([[1.0, 2.0], [3.0, 4.0]]))) # tensor([[0.0000, 0.6931], [1.0986, 1.3863]])
# torch.floor()、torch.ceil() 向下取整floor、向上取整ceil
print(torch.floor(torch.tensor([[1.2, 2.8], [3.5, 4.1]]))) # tensor([[1., 2.], [3., 4.]])
print(torch.ceil(torch.tensor([[1.2, 2.8], [3.5, 4.1]]))) # tensor([[2., 3.], [4., 5.]])
# nn.Linear(x, y) 定义一个线性层,x行y列,总共x*y个weight神经元,y个bias神经元
layer1 = nn.Linear(3, 1) # 定义一个线性层
print(f"layer1\t权重 W:{layer1.weight.shape}\t偏置 b:{layer1.bias.shape}") # 查看权重和偏置:layer1 权重 W:torch.Size([1, 3]) 偏置 b:torch.Size([1])
layer2 = nn.Linear(3, 2) # 定义一个线性层
print(f"layer2\t权重 W:{layer2.weight.shape}\t偏置 b:{layer2.bias.shape}") # 查看权重和偏置:layer2 权重 W:torch.Size([2, 3]) 偏置 b:torch.Size([2])
# optimizer.zero_grad() 梯度清零,清空优化器跟踪的参数的梯度(即 model.parameters() 中注册的参数)
# layer.weight.grad、layer.bias.grad 保存该层的 权重weight梯度信息 和 偏置bias梯度信息
# model.named_parameters() 通过迭代器 获取模型的所有参数(而不是某一层)及其梯度 [(n, p.grad) for n, p in model.named_parameters()]
torch.manual_seed(77) # 设置随机种子,77可以改为其他数字
model = nn.Linear(3, 1) # 定义模型:简单线性层,就是3行1列 个神经元
optimizer = optim.SGD(model.parameters(), lr=0.01) # 定义优化器:随机梯度下降优化器
inputs = torch.randn(10, 3) # 模拟输入数据和标签:batch_size批量大小10,特征维度3(就是3行10列的张量,10个样品,每个样品)
labels = torch.randn(10, 1) # 对应标签
for epoch in range(2): # 训练循环
optimizer.zero_grad() # 1. 梯度清零
outputs = model(inputs) # 2. 前向传播计算损失
loss = nn.MSELoss()(outputs, labels)
print(f"计算epoch={epoch}的loss前:weight:{model.weight.grad}\tbias:{model.bias.grad}")
loss.backward() # 3. 反向传播计算梯度
print(f"计算epoch={epoch}的loss后:weight:{model.weight.grad}\tbias:{model.bias.grad}")
optimizer.step() # 4. 优化器更新参数
# 计算epoch=0的loss前:weight:None bias:None
# 计算epoch=0的loss后:weight:tensor([[-1.2573, -0.0045, -0.6926]]) bias:tensor([0.2520])
# 计算epoch=1的loss前:weight:tensor([[0., 0., 0.]]) bias:tensor([0.])
# 计算epoch=1的loss后:weight:tensor([[-1.2206, -0.0055, -0.6704]]) bias:tensor([0.2330])
# 如果注释掉optimizer.zero_grad(),可以对比bias变化,下面的 0.4849≈0.2520+0.2330
# 计算epoch=0的loss前:weight:None bias:None
# 计算epoch=0的loss后:weight:tensor([[-1.2573, -0.0045, -0.6926]]) bias:tensor([0.2520])
# 计算epoch=1的loss前:weight:tensor([[-1.2573, -0.0045, -0.6926]]) bias:tensor([0.2520])
# 计算epoch=1的loss后:weight:tensor([[-2.4779, -0.0100, -1.3630]]) bias:tensor([0.4849])
# torch.nn.utils.clip_grad_norm_() 梯度裁剪
torch.manual_seed(77) # 设置随机种子,77可以改为其他数字
model = nn.Linear(3, 1)
optimizer = optim.SGD(model.parameters(), lr=0.01)
input_data = torch.randn(10, 3)
output = model(input_data) # 前向传播
loss = torch.nn.functional.mse_loss(output, torch.randn(10, 1))
loss.backward() # 反向传播
print(f"裁剪前梯度:weight.grad={model.weight.grad}\tbias.grad={model.bias.grad}")
grads = torch.cat([p.grad.flatten() for p in model.parameters()]) # grads = tensor([-1.2573, -0.0045, -0.6926, 0.2520])
weightGrad, biasGrad = model.weight.grad*1/torch.norm(grads), model.bias.grad*1/torch.norm(grads)
print(f"手动计算裁剪后梯度:weight.grad={weightGrad}\tbias.grad={biasGrad}")
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) # 梯度裁剪
print(f"裁剪后梯度:{model.weight.grad}\tbias.grad={model.bias.grad}")
optimizer.step()
# 打印:
# 裁剪前梯度:weight.grad=tensor([[-1.2573, -0.0045, -0.6926]]) bias.grad=tensor([0.2520])
# 手动计算裁剪后梯度:weight.grad=tensor([[-0.8627, -0.0031, -0.4752]]) bias.grad=tensor([0.1729])
# 裁剪后梯度:tensor([[-0.8627, -0.0031, -0.4752]]) bias.grad=tensor([0.1729])
# 可见:-0.8627 = -1.2573 * 1 / math.sqrt((1.2573*1.2573 + 0.0045*0.0045 + 0.6926*0.6926 + 0.2520*0.2520))