1. 解题思路
这一题是题目3546. Equal Sum Grid Partition I的进阶版本,不过本质上还是差不多的。
相较于题目3546,这里的改动是可以允许至多一个元素的清零,但不能使得区域不连续。
因此,我们就是分别要在横向和纵向考察以每一个位置进行切分时,两侧的元素差,然后考察较多的那一部分是否恰好有与差值完全相同的元素,且这个元素如果被去除的话是否会将对应的区域完全切断开来,这个我们只需要分类考察一下即可。
2. 代码实现
给出python代码实现如下:
class Solution:
def canPartitionGrid(self, grid: List[List[int]]) -> bool:
n, m = len(grid), len(grid[0])
cnt = defaultdict(int)
tot = 0
for i in range(n):
for j in range(m):
cnt[grid[i][j]] += 1
tot += grid[i][j]
_cnt = defaultdict(int)
_tot = 0
for i in range(n-1):
for j in range(m):
_cnt[grid[i][j]] += 1
_tot += grid[i][j]
delta = 2 * _tot - tot
if delta == 0:
return True
elif delta > 0:
if _cnt[delta] > 0 and i > 0 and m > 1:
return True
elif i > 0 and m == 1 and (grid[0][0] == delta or grid[i][0] == delta):
return True
elif i == 0 and (grid[0][0] == delta or grid[0][-1] == delta):
return True
else:
if cnt[-delta] - _cnt[-delta] > 0 and i < n-2 and m > 1:
return True
elif i < n-2 and m == 1 and (grid[-1][0] == -delta or grid[i+1][0] == -delta):
return True
elif i == n-2 and (grid[-1][0] == -delta or grid[-1][-1] == -delta):
return True
_cnt = defaultdict(int)
_tot = 0
for j in range(m-1):
for i in range(n):
_cnt[grid[i][j]] += 1
_tot += grid[i][j]
delta = 2 * _tot - tot
if delta == 0:
return True
elif delta > 0:
if _cnt[delta] > 0 and j > 0 and n > 1:
return True
elif j > 0 and n == 1 and (grid[0][0] == delta or grid[0][j] == delta):
return True
elif j == 0 and (grid[0][0] == delta or grid[-1][0] == delta):
return True
else:
if cnt[-delta] - _cnt[-delta] > 0 and j < m-2 and n > 1:
return True
elif j < m-2 and n == 1 and (grid[0][-1] == -delta or grid[0][j+1] == -delta):
return True
elif j == m-2 and (grid[0][-1] == -delta or grid[-1][-1] == -delta):
return True
return False
提交代码评测得到:耗时847ms,占用内存57.9MB。