这段代码实现了基于运动补偿的前景检测算法。
主要功能包括:
- 运动补偿模块:使用基于网格的 KLT 特征跟踪算法计算两帧之间的运动,然后通过单应性变换实现帧间运动补偿。
- 前景检测模块:结合两帧运动补偿结果,通过帧间差分计算前景掩码。
- 异常处理:添加了图像加载检查和异常捕获,提高了代码的健壮性。
- 路径处理:自动创建保存目录,避免因目录不存在导致的错误。
使用时需要提供三帧连续图像:两个参考帧和当前帧。代码会计算出前景掩码并保存为图像文件。
import cv2
import numpy as np
import os
import sys
def motion_compensate(frame1, frame2):
"""
使用基于网格的KLT特征跟踪实现两帧之间的运动补偿
参数:
frame1: 前一帧图像(BGR格式)
frame2: 当前帧图像(BGR格式)
返回:
compensated: 运动补偿后的图像
mask: 补偿区域的掩码
avg_dst: 平均运动距离
motion_x: x方向平均运动量
motion_y: y方向平均运动量
homography_matrix: 单应性变换矩阵
"""
# 设置LK光流参数
lk_params = dict(winSize=(15, 15), maxLevel=3,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 30, 0.003))
# 图像预处理和网格点生成
width = frame2.shape[1]
height = frame2.shape[0]
scale = 2 # 放大图像以获得更精确的跟踪
# 调整图像大小以提高特征点检测精度
frame1_grid = cv2.resize(frame1, (960 * scale, 540 * scale), dst=None, interpolation=cv2.INTER_CUBIC)
frame2_grid = cv2.resize(frame2, (960 * scale, 540 * scale), dst=None, interpolation=cv2.INTER_CUBIC)
width_grid = frame2_grid.shape[1]
height_grid = frame2_grid.shape[0]
gridSizeW = 32 * 2 # 网格宽度
gridSizeH = 24 * 2 # 网格高度
# 生成网格点作为特征点
p1 = []
grid_numW = int(width_grid / gridSizeW - 1)
grid_numH = int(height_grid / gridSizeH - 1)
for i in range(grid_numW):
for j in range(grid_numH):
# 将点放置在每个网格中心
point = (np.float32(i * gridSizeW + gridSizeW / 2.0), np.float32(j * gridSizeH + gridSizeH / 2.0))
p1.append(point)
p1 = np.array(p1)
pts_num = grid_numW * grid_numH
pts_prev = p1.reshape(pts_num, 1, 2)
# 计算光流
pts_cur, st, err = cv2.calcOpticalFlowPyrLK(frame1_grid, frame2_grid, pts_prev, None, **lk_params)
# 选择跟踪成功的点
good_new = pts_cur[st == 1] # 当前帧中的跟踪点
good_old = pts_prev[st == 1] # 前一帧中的跟踪点
# 计算运动距离和位移
motion_distance = []
translate_x = []
translate_y = []
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
motion_distance0 = np.sqrt((a - c) * (a - c) + (b - d) * (b - d))
# 过滤异常大的运动值
if motion_distance0 > 50:
continue
translate_x0 = a - c
translate_y0 = b - d
motion_distance.append(motion_distance0)
translate_x.append(translate_x0)
translate_y.append(translate_y0)
motion_dist = np.array(motion_distance)
motion_x = np.mean(np.array(translate_x)) if translate_x else 0
motion_y = np.mean(np.array(translate_y)) if translate_y else 0
avg_dst = np.mean(motion_dist) if motion_dist.size > 0 else 0
# 计算单应性变换矩阵
if len(good_old) < 15:
# 点太少时使用近似恒等变换
homography_matrix = np.array([[0.999, 0, 0], [0, 0.999, 0], [0, 0, 1]])
else:
# 使用RANSAC算法估计单应性矩阵
homography_matrix, status = cv2.findHomography(good_new, good_old, cv2.RANSAC, 3.0)
# 应用单应性变换进行运动补偿
compensated = cv2.warpPerspective(frame1, homography_matrix, (width, height), flags=cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)
# 生成掩码以指示变换区域
vertex = np.array([[0, 0], [width, 0], [width, height], [0, height]], dtype=np.float32).reshape(-1, 1, 2)
homo_inv = np.linalg.inv(homography_matrix)
vertex_trans = cv2.perspectiveTransform(vertex, homo_inv)
vertex_transformed = np.array(vertex_trans, dtype=np.int32).reshape(1, 4, 2)
im = np.zeros(frame1.shape[:2], dtype='uint8')
cv2.polylines(im, vertex_transformed, 1, 255)
cv2.fillPoly(im, vertex_transformed, 255)
mask = 255 - im
return compensated, mask, avg_dst, motion_x, motion_y, homography_matrix
def FD_mask(lastFrame1, lastFrame2, currentFrame, save_path='data/mask.jpg'):
"""
使用两帧运动补偿计算前景掩码
参数:
lastFrame1: 第一参考帧(BGR格式)
lastFrame2: 第二参考帧(BGR格式)
currentFrame: 当前帧(BGR格式)
save_path: 结果掩码保存路径
"""
# 图像预处理:高斯模糊和灰度转换
lastFrame1 = cv2.GaussianBlur(lastFrame1, (11, 11), 0)
lastFrame1 = cv2.cvtColor(lastFrame1, cv2.COLOR_BGR2GRAY)
lastFrame2 = cv2.GaussianBlur(lastFrame2, (11, 11), 0)
lastFrame2 = cv2.cvtColor(lastFrame2, cv2.COLOR_BGR2GRAY)
currentFrame = cv2.GaussianBlur(currentFrame, (11, 11), 0)
currentFrame = cv2.cvtColor(currentFrame, cv2.COLOR_BGR2GRAY)
# 计算第一参考帧到第二参考帧的运动补偿
img_compensate1, mask1, avg_dist1, motion_x1, motion_y1, homo_matrix = motion_compensate(lastFrame1, lastFrame2)
frameDiff1 = cv2.absdiff(lastFrame2, img_compensate1)
# 计算当前帧到第二参考帧的运动补偿
img_compensate2, mask2, avg_dist2, motion_x2, motion_y2, homo_matrix2 = motion_compensate(currentFrame, lastFrame2)
frameDiff2 = cv2.absdiff(lastFrame2, img_compensate2)
# 融合两个差分结果
frameDiff = (frameDiff1 + frameDiff2) / 2
# 保存结果
os.makedirs(os.path.dirname(save_path), exist_ok=True)
cv2.imwrite(save_path, frameDiff)
print(f'前景掩码已保存至: {save_path}')
return frameDiff
if __name__ == "__main__":
# 示例:加载三帧图像并计算前景掩码
# 请确保这些图像存在,或者修改为您自己的图像路径
try:
lastFrame1 = cv2.imread('data/Test_images/images/phantom05_0600.jpg')
lastFrame3 = cv2.imread('data/Test_images/images/phantom05_0602.jpg')
currentFrame = cv2.imread('data/Test_images/images/phantom05_0604.jpg')
if lastFrame1 is None or lastFrame3 is None or currentFrame is None:
print("错误: 无法加载图像,请检查文件路径!")
else:
FD_mask(lastFrame1, lastFrame3, currentFrame)
except Exception as e:
print(f"程序执行出错: {e}")
#include <opencv2/opencv.hpp>
#include <vector>
#include <iostream>
#include <numeric>
#include <cmath>
using namespace cv;
using namespace std;
struct MotionCompensationResult {
Mat compensated;
Mat mask;
float avg_dst;
float motion_x;
float motion_y;
Mat homography_matrix;
};
MotionCompensationResult motion_compensate(const Mat& frame1, const Mat& frame2) {
// KLT 跟踪参数
TermCriteria term_criteria(TermCriteria::EPS | TermCriteria::COUNT, 30, 0.003);
Size win_size(15, 15);
int max_level = 3;
// 图像缩放
int scale = 2;
Mat frame1_grid, frame2_grid;
resize(frame1, frame1_grid, Size(960 * scale, 540 * scale), 0, 0, INTER_CUBIC);
resize(frame2, frame2_grid, Size(960 * scale, 540 * scale), 0, 0, INTER_CUBIC);
// 创建网格点
int gridSizeW = 32 * 2;
int gridSizeH = 24 * 2;
int grid_numW = static_cast<int>(frame2_grid.cols / gridSizeW - 1);
int grid_numH = static_cast<int>(frame2_grid.rows / gridSizeH - 1);
vector<Point2f> p1;
for (int i = 0; i < grid_numW; i++) {
for (int j = 0; j < grid_numH; j++) {
p1.push_back(Point2f(i * gridSizeW + gridSizeW / 2.0f, j * gridSizeH + gridSizeH / 2.0f));
}
}
int pts_num = grid_numW * grid_numH;
Mat pts_prev = Mat(p1).reshape(2, pts_num);
// 计算光流
vector<Point2f> pts_cur;
vector<uchar> status;
vector<float> err;
calcOpticalFlowPyrLK(frame1_grid, frame2_grid, pts_prev, pts_cur, status, err, win_size, max_level, term_criteria);
// 筛选好点
vector<Point2f> good_new, good_old;
for (size_t i = 0; i < status.size(); i++) {
if (status[i]) {
good_new.push_back(pts_cur[i]);
good_old.push_back(p1[i]);
}
}
// 计算运动距离和位移
vector<float> motion_distance;
vector<float> translate_x, translate_y;
for (size_t i = 0; i < good_new.size(); i++) {
float dx = good_new[i].x - good_old[i].x;
float dy = good_new[i].y - good_old[i].y;
float dist = sqrt(dx * dx + dy * dy);
if (dist > 50) continue;
motion_distance.push_back(dist);
translate_x.push_back(dx);
translate_y.push_back(dy);
}
// 计算平均值
float avg_dst = 0, motion_x = 0, motion_y = 0;
if (!motion_distance.empty()) {
avg_dst = accumulate(motion_distance.begin(), motion_distance.end(), 0.0f) / motion_distance.size();
}
if (!translate_x.empty()) {
motion_x = accumulate(translate_x.begin(), translate_x.end(), 0.0f) / translate_x.size();
motion_y = accumulate(translate_y.begin(), translate_y.end(), 0.0f) / translate_y.size();
}
// 计算单应性矩阵
Mat homography_matrix;
if (good_old.size() < 15) {
homography_matrix = (Mat_<double>(3, 3) << 0.999, 0, 0, 0, 0.999, 0, 0, 0, 1);
} else {
homography_matrix = findHomography(good_new, good_old, RANSAC, 3.0);
}
// 运动补偿
Mat compensated;
warpPerspective(frame1, compensated, homography_matrix, Size(frame1.cols, frame1.rows), INTER_LINEAR + WARP_INVERSE_MAP);
// 计算掩膜
vector<Point2f> vertex;
vertex.push_back(Point2f(0, 0));
vertex.push_back(Point2f(frame1.cols, 0));
vertex.push_back(Point2f(frame1.cols, frame1.rows));
vertex.push_back(Point2f(0, frame1.rows));
Mat vertex_mat = Mat(vertex).reshape(2);
Mat homo_inv = homography_matrix.inv();
vector<Point2f> vertex_trans;
perspectiveTransform(vertex_mat, vertex_trans, homo_inv);
vector<Point> vertex_transformed;
for (const auto& pt : vertex_trans) {
vertex_transformed.push_back(Point(static_cast<int>(pt.x), static_cast<int>(pt.y)));
}
Mat mask = Mat::zeros(frame1.size(), CV_8UC1);
vector<vector<Point>> contours;
contours.push_back(vertex_transformed);
polylines(mask, contours, true, Scalar(255), 1);
fillPoly(mask, contours, Scalar(255));
mask = 255 - mask;
return {compensated, mask, avg_dst, motion_x, motion_y, homography_matrix};
}
void FD_mask(const Mat& lastFrame1, const Mat& lastFrame2, const Mat& currentFrame, const string& save_path = "mask.jpg") {
// 图像预处理
Mat lastFrame1_gray, lastFrame2_gray, currentFrame_gray;
GaussianBlur(lastFrame1, lastFrame1_gray, Size(11, 11), 0);
GaussianBlur(lastFrame2, lastFrame2_gray, Size(11, 11), 0);
GaussianBlur(currentFrame, currentFrame_gray, Size(11, 11), 0);
cvtColor(lastFrame1_gray, lastFrame1_gray, COLOR_BGR2GRAY);
cvtColor(lastFrame2_gray, lastFrame2_gray, COLOR_BGR2GRAY);
cvtColor(currentFrame_gray, currentFrame_gray, COLOR_BGR2GRAY);
// 第一组运动补偿
auto result1 = motion_compensate(lastFrame1_gray, lastFrame2_gray);
Mat frameDiff1;
absdiff(lastFrame2_gray, result1.compensated, frameDiff1);
// 第二组运动补偿
auto result2 = motion_compensate(currentFrame_gray, lastFrame2_gray);
Mat frameDiff2;
absdiff(lastFrame2_gray, result2.compensated, frameDiff2);
// 计算最终差分
Mat frameDiff;
frameDiff1.convertTo(frameDiff1, CV_32F);
frameDiff2.convertTo(frameDiff2, CV_32F);
frameDiff = (frameDiff1 + frameDiff2) / 2;
frameDiff.convertTo(frameDiff, CV_8U);
// 保存结果
imwrite(save_path, frameDiff);
cout << "done!" << endl;
}
int main() {
// 读取图像
Mat lastFrame1 = imread("data/Test_images/images/phantom05_0600.jpg");
Mat lastFrame3 = imread("data/Test_images/images/phantom05_0602.jpg");
Mat currentFrame = imread("data/Test_images/images/phantom05_0604.jpg");
/*
Mat lastFrame1 = imread("250514_430.bmp");
Mat lastFrame3 = imread("250514_463.bmp");
Mat currentFrame = imread("250514_490.bmp");
*/
// 检查图像是否成功加载
if (lastFrame1.empty() || lastFrame3.empty() || currentFrame.empty()) {
cout << "无法加载图像!" << endl;
return -1;
}
// 执行帧间差分
FD_mask(lastFrame1, lastFrame3, currentFrame);
return 0;
}