K均值(K-Means) & 高斯混合模型(GMM)——K均值是高斯混合模型的特例

发布于:2025-05-21 ⋅ 阅读:(14) ⋅ 点赞:(0)

K-means和GMM(高斯混合模型)两种聚类算法的特点

K-means
  • non-probabilistic
  • 根据距离判断
  • 硬分类
  • 球形簇
GMM
  • probabilistic
  • 根据后验概率判断
  • 软分类
  • 每一个类是一个高斯分布
  • 椭圆形簇

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

K均值可以看成是高斯混合模型的特例。


算法 K-Means


  1. 初始化 K K K τ > 0 \tau > 0 τ>0 { μ k ( 0 ) } k = 1 K \{\boldsymbol{\mu}_k^{(0)}\}_{k=1}^K {μk(0)}k=1K

  2. repeat

  3. E 步:更新簇分配
    α i ( t + 1 ) ( k ) = { 1 , 若  k = arg ⁡ min ⁡ j = 1 , ⋯   , K ∥ x i − μ j ( t ) ∥ 2 0 , 否则 , i = 1 , ⋯   , n \alpha_i^{(t+1)}(k) = \begin{cases} 1, & \text{若 } k = \arg \min_{j=1,\cdots,K} \|{\bm x}_i - \boldsymbol{\mu}_j^{(t)}\|^2 \\ 0, & \text{否则} \end{cases}, \quad i=1,\cdots,n αi(t+1)(k)={1,0, k=argminj=1,,Kxiμj(t)2否则,i=1,,n

  4. M 步:更新簇中心
    μ k ( t + 1 ) = ∑ i = 1 n α i ( t + 1 ) ( k ) x i ∑ i = 1 n α i ( t + 1 ) ( k ) , 对于  k = 1 , ⋯   , K \boldsymbol{\mu}_k^{(t+1)} = \frac{\sum_{i=1}^n \alpha_i^{(t+1)}(k) {\bm x}_i}{\sum_{i=1}^n \alpha_i^{(t+1)}(k)}, \quad \text{对于 } k=1,\cdots,K μk(t+1)=i=1nαi(t+1)(k)i=1nαi(t+1)(k)xi,对于 k=1,,K

  5. 计算得分:
    J ( t + 1 ) = 1 n ∑ i = 1 n ∑ k = 1 K α i ( t + 1 ) ( k ) ∥ x i − μ k ( t + 1 ) ∥ 2 J^{(t+1)} = \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^K \alpha_i^{(t+1)}(k) \|{\bm x}_i - \boldsymbol{\mu}_k^{(t+1)}\|^2 J(t+1)=n1i=1nk=1Kαi(t+1)(k)xiμk(t+1)2

  6. until ∣ J ( t + 1 ) − J ( t ) ∣ < τ |J^{(t+1)} - J^{(t)}| < \tau J(t+1)J(t)<τ


算法 使用EM和高斯混合模型聚类


  1. 初始化 K K K τ > 0 \tau > 0 τ>0 { α k ( 0 ) , μ k ( 0 ) , Σ k ( 0 ) } k = 1 K \{\alpha_k^{(0)}, \mu_k^{(0)}, \Sigma_k^{(0)}\}_{k=1}^K {αk(0),μk(0),Σk(0)}k=1K

  2. repeat

  3. E步:更新簇成员
    γ k ( t ) ( x i ) = α k ( t ) N ( x i ∣ μ k ( t ) , Σ k ( t ) ) ∑ k = 1 K α k ( t ) N ( x i ∣ μ k ( t ) , Σ k ( t ) ) \gamma_k^{(t)}({\bm x}_i) = \frac{\alpha_k^{(t)} \mathcal{N}({\bm x}_i \mid \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_{k=1}^K \alpha_k^{(t)} \mathcal{N}({\bm x}_i \mid \mu_k^{(t)}, \Sigma_k^{(t)})} γk(t)(xi)=k=1Kαk(t)N(xiμk(t),Σk(t))αk(t)N(xiμk(t),Σk(t))

  4. M步:重新估计模型参数
    μ k ( t + 1 ) = ∑ i = 1 n γ k ( t ) ( x i ) x i ∑ i = 1 n γ k ( t ) ( x i ) \mu_k^{(t+1)} = \frac{\sum_{i=1}^n \gamma_k^{(t)}({\bm x}_i) {\bm x}_i}{\sum_{i=1}^n \gamma_k^{(t)}({\bm x}_i)} μk(t+1)=i=1nγk(t)(xi)i=1nγk(t)(xi)xi Σ k ( t + 1 ) = ∑ i = 1 n γ k ( t ) ( x i ) ( x i − μ ^ k ( t + 1 ) ) ( x i − μ ^ k ( t + 1 ) ) ⊤ ∑ i = 1 n γ k ( t ) ( x i ) \Sigma_k^{(t+1)} = \frac{\sum_{i=1}^n \gamma_k^{(t)}({\bm x}_i) ({\bm x}_i - \hat{\mu}_k^{(t+1)}) ({\bm x}_i - \hat{\mu}_k^{(t+1)})^ {\top} }{\sum_{i=1}^n \gamma_k^{(t)}({\bm x}_i)} Σk(t+1)=i=1nγk(t)(xi)i=1nγk(t)(xi)(xiμ^k(t+1))(xiμ^k(t+1)) α k ( t + 1 ) = 1 n ∑ i = 1 n γ k ( t ) ( x i ) \alpha_k^{(t+1)} = \frac{1}{n} \sum_{i=1}^n \gamma_k^{(t)}({\bm x}_i) αk(t+1)=n1i=1nγk(t)(xi)

  5. 计算对数似然:
    L ( { α k ( t + 1 ) , μ k ( t + 1 ) , Σ k ( t + 1 ) } k = 1 K ) = ∑ i = 1 n ln ⁡ ( ∑ k = 1 K α k ( t + 1 ) N ( x i ∣ μ k ( t + 1 ) , Σ k ( t + 1 ) ) ) L(\{\alpha_k^{(t+1)}, \mu_k^{(t+1)}, \Sigma_k^{(t+1)}\}_{k=1}^K) = \sum_{i=1}^n \ln \left( \sum_{k=1}^K \alpha_k^{(t+1)} \mathcal{N}({\bm x}_i \mid \mu_k^{(t+1)}, \Sigma_k^{(t+1)}) \right) L({αk(t+1),μk(t+1),Σk(t+1)}k=1K)=i=1nln(k=1Kαk(t+1)N(xiμk(t+1),Σk(t+1)))

  6. until ∣ L ( { α k ( t + 1 ) , μ k ( t + 1 ) , Σ k ( t + 1 ) } k = 1 K ) − L ( { α k ( t ) , μ k ( t ) , Σ k ( t ) } k = 1 K ) ∣ < τ |L(\{\alpha_k^{(t+1)}, \mu_k^{(t+1)}, \Sigma_k^{(t+1)}\}_{k=1}^K) - L(\{\alpha_k^{(t)}, \mu_k^{(t)}, \Sigma_k^{(t)}\}_{k=1}^K)| < \tau L({αk(t+1),μk(t+1),Σk(t+1)}k=1K)L({αk(t),μk(t),Σk(t)}k=1K)<τ



网站公告

今日签到

点亮在社区的每一天
去签到